Сколько идти лет до ближайшей звезды. Возможно долететь до звезды? Ну, хотя бы ближайшей? А что это вообще за альфа Центавра

В какой-то момент жизни каждый из нас задавал этот вопрос: как долго лететь к звездам? Можно ли осуществить такой перелет за одну человеческую жизнь, могут ли такие полеты стать нормой повседневности? На этот сложный вопрос очень много ответов, в зависимости от того, кто спрашивает. Некоторые простые, другие сложнее. Чтобы найти исчерпывающий ответ, слишком многое нужно принять во внимание.

К сожалению, никаких реальных оценок, которые помогли бы найти такой ответ, не существует, и это расстраивает футурологов и энтузиастов межзвездных путешествий. Нравится нам это или нет, космос очень большой (и сложный), и наши технологии все еще ограничены. Но если мы когда-нибудь решимся покинуть «родное гнездышко», у нас будет несколько способов добраться до ближайшей звездной системы в нашей галактике.

Ближайшей звездой к нашей Земле является Солнце, вполне себе «средняя» звезда по схеме «главной последовательности» Герцшпрунга – Рассела. Это означает, что звезда весьма стабильна и обеспечивает достаточно солнечного света, чтобы на нашей планете развивалась жизнь. Мы знаем, что вокруг звезд рядом с нашей Солнечной системой вращаются и другие планеты, и многие из этих звезд похожи на нашу собственную.

Часть первая: современные методы

В будущем, если человечество желает покинуть Солнечную систему, у нас будет огромный выбор звезд, на которые мы могли бы отправиться, и многие из них вполне могут располагать благоприятными для жизни условиями. Но куда мы отправимся и сколько времени у нас займет дорога туда? Не забывайте, что все это всего лишь домыслы, и нет никаких ориентиров для межзвездных путешествий в настоящее время. Ну, как говорил Гагарин, поехали!

Дотянуться до звезды

Как уже отмечалось, ближайшая звезда к нашей Солнечной системе - это Проксима Центавра, и поэтому имеет большой смысл начать планирование межзвездной миссии именно с нее. Будучи частью тройной звездной системы Альфа Центавра, Проксима находится в 4,24 светового года (1,3 парсека) от Земли. Альфа Центавра - это, по сути, самая яркая звезда из трех в системе, часть тесной бинарной системы в 4,37 светового года от Земли - тогда как Проксима Центавра (самая тусклая из трех) представляет собой изолированный красный карлик в 0,13 световых лет от двойной системы.

И хотя беседы о межзвездных путешествиях навевают мысли о всевозможных путешествиях «быстрее скорости света» (БСС), начиная от варп-скоростей и червоточины до подпространственных двигателей, такие теории либо в высшей степени вымышлены (вроде двигателя Алькубьерре), либо существуют лишь в научной фантастике. Любая миссия в глубокий космос растянется на поколения людей.

Итак, если начинать с одной из самых медленных форм космических путешествий, сколько времени потребуется, чтобы добраться до Проксимы Центавра?

Современные методы

Вопрос оценки длительности перемещения в космосе куда проще, если в нем замешаны существующие технологии и тела в нашей Солнечной системе. К примеру, используя технологию, используемую миссией «Новых горизонтов», 16 двигателей на гидразиновом монотопливе, можно добраться до Луны всего за 8 часов и 35 минут.

Есть также миссия SMART-1 Европейского космического агентства, которая двигалась к Луне с помощью ионной тяги. С этой революционной технологией, вариант которой использовал также космический зонд Dawn, чтобы достичь Весты, миссии SMART-1 потребовался год, месяц и две недели, чтобы добраться до Луны.

От быстрого ракетного космического аппарата до экономного ионного двигателя, у нас есть парочка вариантов передвижения по местному космосу - плюс можно использовать Юпитер или Сатурн как огромную гравитационную рогатку. Тем не менее, если мы планируем выбраться чуть подальше, нам придется наращивать мощь технологий и изучать новые возможности.

Когда мы говорим о возможных методах, мы говорим о тех, что вовлекают существующие технологии, или о тех, которых пока не существуют, но которые технически осуществимы. Некоторые из них, как вы увидите, проверены временем и подтверждены, а другие пока остаются под вопросом. Вкратце, они представляют возможный, но очень затратный по времени и финансам сценарий путешествия даже к ближайшей звезде.

Ионное движение

Сейчас самой медленной и самой экономичной формой двигателя является ионный двигатель. Несколько десятилетий назад ионное движение считалось предметом научной фантастики. Но в последние года технологии поддержки ионных двигателей перешли от теории к практике, и весьма успешно. Миссия SMART-1 Европейского космического агентства - пример успешно проведенной миссии к Луне за 13 месяцев спирального движения от Земли.

SMART-1 использовала ионные двигатели на солнечной энергии, в которых электроэнергия собиралась солнечными батареями и использовалась для питания двигателей эффекта Холла. Чтобы доставить SMART-1 на Луну, потребовалось всего 82 килограмма ксенонового топлива. 1 килограмм ксенонового топлива обеспечивает дельта-V в 45 м/с. Это крайне эффективная форма движения, но далеко не самая быстрая.

Одной из первых миссий, использовавших технологию ионного двигателя, была миссия Deep Space 1 к комете Боррелли в 1998 году. DS1 тоже использовал ксеноновый ионный двигатель и потратил 81,5 кг топлива. За 20 месяцев тяги DS1 развил скорости в 56 000 км/ч на момент пролета кометы.

Ионные двигатели более экономичны, чем ракетные технологии, поскольку их тяга на единицу массы ракетного топлива (удельный импульс) намного выше. Но ионным двигателям нужно много времени, чтобы разогнать космический аппарат до существенных скоростей, и максимальная скорость зависит от топливной поддержки и объемов выработки электроэнергии.

Поэтому, если использовать ионное движение в миссии к Проксиме Центавра, двигатели должны иметь мощный источник энергии (ядерная энергия) и большие запасы топлива (хотя и меньше, чем обычные ракеты). Но если отталкиваться от допущения, что 81,5 кг ксенонового топлива переводится в 56 000 км/ч (и не будет никаких других форм движения), можно произвести расчеты.

На максимальной скорости в 56 000 км/ч Deep Space 1 потребовалось бы 81 000 лет, чтобы преодолеть 4,24 светового года между Землей и Проксимой Центавра. По времени это порядка 2700 поколений людей. Можно с уверенность сказать, что межпланетный ионный двигатель будет слишком медленным для пилотируемой межзвездной миссии.

Но если ионные двигатели будут крупнее и мощнее (то есть скорость исхода ионов будет значительно выше), если будет достаточно ракетного топлива, которого хватит на все 4,24 светового года, время путешествия значительно сократится. Но все равно останется значительно больше срока человеческой жизни.

Гравитационный маневр

Самый быстрый способ космических путешествий - это использование гравитационного маневра. Этот метод включает использование космическим аппаратом относительного движения (то есть орбиту) и гравитации планеты для изменения пути и скорости. Гравитационные маневры являются крайне полезной техникой космических полетов, особенно при использовании Земли или другой массивной планеты (вроде газового гиганта) для ускорения.

Космический аппарат Mariner 10 первым использовал этот метод, используя гравитационную тягу Венеры для разгона в сторону Меркурия в феврале 1974 года. В 1980-х зонд «Вояджер-1» использовал Сатурн и Юпитер для гравитационных маневров и разгона до 60 000 км/ч с последующим выходом в межзвездное пространство.

Миссии Helios 2, которая началась в 1976 году и должна была исследовать межпланетную среду между 0,3 а. е. и 1 а. е. от Солнца, принадлежит рекорд самой высокой скорости, развитой с помощью гравитационного маневра. На тот момент Helios 1 (запущенному в 1974 году) и Helios 2 принадлежал рекорд самого близкого подхода к Солнцу. Helios 2 был запущен обычной ракетой и выведен на сильно вытянутую орбиту.

Из-за большого эксцентриситета (0,54) 190-дневной солнечной орбиты, в перигелии Helios 2 удалось достичь максимальной скорости свыше 240 000 км/ч. Эта орбитальная скорость была развита за счет только лишь гравитационного притяжения Солнца. Технически скорость перигелия Helios 2 не была результатом гравитационного маневра, а максимальной орбитальной скоростью, но аппарат все равно удерживает рекорд самого быстрого искусственного объекта.

Если бы «Вояджер-1» двигался в направлении красного карлика Проксимы Центавра с постоянной скорость в 60 000 км/ч, ему потребовалось бы 76 000 лет (или более 2500 поколений), чтобы преодолеть это расстояние. Но если бы зонд развил рекордную скорость Helios 2 - постоянную скорость в 240 000 км/ч - ему потребовалось бы 19 000 лет (или более 600 поколений), чтобы преодолеть 4,243 светового года. Существенно лучше, хотя и близко не практично.

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий - это радиочастотный двигатель с резонансной полостью, известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу.

Если традиционные электромагнитные двигатели предназначены для приведения в движение определенной массы (вроде ионизированных частиц), конкретно эта двигательная система не зависит от реакции массы и не испускает направленного излучения. Вообще, этот двигатель встретили с изрядной долей скепсиса во многом потому, что он нарушает закон сохранения импульса, согласно которому импульс системы остается постоянным и его нельзя создать или уничтожить, а только изменить под действием силы.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.

В апреле 2015 года ученые NASA Eagleworks (часть Космического центра им. Джонсона) заявили, что успешно испытали этот двигатель в вакууме, что может указывать на возможное применение в космосе. В июле того же года группа ученых из отделения космических систем Дрезденского технологического университета разработала собственную версию двигателя и наблюдала ощутимую тягу.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/кВт), космический аппарат на электромагнитном двигателе может осуществить поездку к Плутону менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Ядерное тепловое и ядерное электрическое движение

Еще одна возможность осуществить межзвездный перелет - использовать космический аппарат, оснащенный ядерными двигателями. NASA десятилетиями изучало такие варианты. В ракете на ядерном тепловом движении можно было бы использовать урановые или дейтериевые реакторы, чтобы нагревать водород в реакторе, превращая его в ионизированный газ (плазму водорода), который затем будет направляться в сопло ракеты, генерируя тягу.

Ракета с ядерным электрическим приводом включает тот же реактор, преобразующий тепло и энергию в электроэнергию, которая затем питает электродвигатель. В обоих случаях ракета будет полагаться на ядерный синтез или ядерное деление для создания тяги, а не на химическое топливо, на котором работают все современные космические агентства.

По сравнению с химическими двигателями, у ядерных есть неоспоримые преимущества. Во-первых, это практически неограниченная энергетическая плотность по сравнению с ракетным топливом. Кроме того, ядерный двигатель также будет вырабатывать мощную тягу по сравнению с используемым объемом топлива. Это позволит сократить объемы необходимого топлива, а вместе с тем вес и стоимость конкретного аппарата.

Хотя двигатели на тепловой ядерной энергии пока в космос не выходили, их прототипы создавались и испытывались, а предлагалось их еще больше.

И все же, несмотря на преимущества в экономии топлива и удельном импульсе, самая лучшая из предложенных концепций ядерного теплового двигателя имеет максимальный удельный импульс в 5000 секунд (50 кН c/кг). Используя ядерные двигатели, работающие на ядерном делении или синтезе, ученые NASA могли бы доставить космический аппарат на Марс всего за 90 дней, если Красная планета будет в 55 000 000 километрах от Земли.

Но если говорить о путешествии к Проксиме Центавра, ядерной ракете потребуются столетия, чтобы разогнаться до существенной доли скорости света. Потом потребуются несколько десятилетий пути, а за ними еще много веков торможения на пути к цели. Мы все еще в 1000 годах от пункта назначения. Что хорошо для межпланетных миссий, не так хорошо для межзвездных.

Часть вторая: теоретические методы

Если использовать существующие технологии, времени, чтобы отправить ученых и астронавтов в межзвездную миссию, потребуется очень и очень много. Путешествие будет мучительно долгим (даже по космическим меркам). Если мы хотим осуществить такое путешествие хотя бы за одну жизнь, ну или за поколение, нам нужны более радикальные (читай: сугубо теоретические) меры. И если червоточины и подпространственные двигатели на текущий момент являются абсолютно фантастическими, много лет существовали другие идеи, в реализацию которых мы верим.

Ядерная силовая установка

Ядерная силовая установка - это теоретически возможный «двигатель» для быстрого космического путешествия. Концепцию первоначально предложил Станислав Улам в 1946 году, польско-американский математик, принимавший участие в Манхэттенском проекте, а предварительные расчеты сделали Ф. Райнес и Улам в 1947 году. Проект «Орион» был запущен в 1958 году и просуществовал до 1963-го.

Под руководством Теда Тейлора из General Atomics и физика Фримена Дайсона из Института перспективных исследований в Принстоне, «Орион» должен был использовать силу импульсных ядерных взрывов, чтобы обеспечить огромную тягу с очень высоким удельным импульсом.

В двух словах, проект «Орион» включает крупный космический аппарат, который набирает скорость за счет поддержки термоядерных боеголовок, выбрасывая бомбы позади и ускоряясь за счет взрывной волны, которая уходит в расположенный сзади «пушер», панель для толчка. После каждого толчка сила взрыва поглощается этой панелью и преобразуется в движение вперед.

Хотя по современным меркам эту конструкцию сложно назвать элегантной, преимущество концепции в том, что она обеспечивает высокую удельную тягу - то есть извлекает максимальное количество энергии из источника топлива (в данном случае ядерных бомб) при минимальных затратах. Кроме того, эта концепция может теоретически разгонять очень высокие скорости, по некоторым оценкам, до 5% от скорости света (5,4 × 107 км/ч).

Конечно, у этого проекта имеются неизбежные минусы. С одной стороны, корабль такого размера будет крайне дорого строить. По оценкам, которые сделал Дайсон в 1968 году, космический аппарат «Орион» на водородных бомбах весил бы от 400 000 до 4 000 000 метрических тонн. И по крайней мере три четверти этого веса будут приходиться на ядерные бомбы, каждая из которых весит примерно одну тонну.

Скромные подсчеты Дайсона показали, что общая стоимость строительства «Ориона» составила бы 367 миллиардов долларов. С поправкой на инфляцию, эта сумма выливается в 2,5 триллиона долларов, это довольно много. Даже при самых скромных оценкам, аппарат будет крайне дорогим в производстве.

Есть еще небольшая проблема радиации, которую он будет излучать, не говоря уж о ядерных отходах. Считается, что именно по этой причине проект был свернут в рамках договора о частичном запрете испытаний от 1963 года, когда мировые правительства стремились ограничить ядерные испытания и остановить чрезмерный выброс радиоактивных осадков в атмосферу планеты.

Ракеты на ядерном синтезе

Другая возможность использования ядерной энергии заключается в термоядерных реакциях для получения тяги. В рамках этой концепции, энергия должна создаваться во время воспламенения гранул смеси дейтерия и гелия-3 в реакционной камере инерционным удержанием с использованием электронных лучей (подобно тому, что делают в Национальном комплексе зажигания в Калифорнии). Такой термоядерный реактор взрывал бы 250 гранул в секунду, создавая высокоэнергетическую плазму, которая затем перенаправлялась бы в сопло, создавая тягу.

Подобно ракете, которая полагается на ядерный реактор, эта концепция обладает преимуществами с точки зрения эффективности топлива и удельного импульса. По оценке, скорость должна достигать 10 600 км/ч, что намного превышает пределы скорости обычных ракет. Более того, эта технология активно изучалась в течение последних нескольких десятилетий, и было сделано много предложений.

Например, между 1973 и 1978 годами Британское межпланетное общество провело исследование возможности проекта «Дедал». Опираясь на современные знания и технологии термоядерного синтеза, ученые призвали к строительству двухступенчатого беспилотного научного зонда, который смог бы добраться до звезды Барнарда (5,9 светового года от Земли) за срок человеческой жизни.

Первая ступень, крупнейшая из двух, работала бы в течение 2,05 года и разогнать аппарат до 7,1% скорости света. Затем эта ступень отбрасывается, зажигается вторая, и аппарат разгоняется до 12% скорости света за 1,8 года. Потом двигатель второй ступени отключается, и корабль летит в течение 46 лет.

По оценкам проекта «Дедал», миссии потребовалось бы 50 лет, чтобы достичь звезды Барнарда. Если к Проксиме Центавра, то же судно доберется за 36 лет. Но, конечно, проект включает массу нерешенных вопросов, в частности неразрешимых с использованием современных технологий - и большинство из них до сих пор не решены.

К примеру, на Земле практически нет гелия-3, а значит, его придется добывать в другом месте (вероятнее всего, на Луне). Во-вторых, реакция, которая движет аппарат, требует, чтобы испускаемая энергия значительно превышала энергию, затраченную на запуск реакции. И хотя эксперименты на Земле уже превзошли «точку безубыточности», мы еще далеки от тех объемов энергии, что смогут питать межзвездный аппарат.

В-третьих, остается вопрос стоимости такого судна. Даже по скромным стандартам беспилотного аппарата проекта «Дедал», полностью оборудованный аппарат будет весить 60 000 тонн. Чтобы вы понимали, вес брутто NASA SLS чуть выше 30 метрических тонн, и один только запуск обойдется в 5 миллиардов долларов (по оценкам 2013 года).

Короче говоря, ракету на ядерном синтезе будет не только слишком дорого строить, но и потребуется уровень термоядерного реактора, намного превышающий наши возможности. Icarus Interstellar, международная организация гражданских ученых (некоторые из которых работали в NASA или ЕКА), пытается оживить концепцию с проектом «Икар». Собранная в 2009 году группа надеется сделать движение на синтезе (и другое) возможным в обозримом будущем.

Термоядерный ПВРД

Известный также как ПВРД Буссарда, двигатель впервые предложил физик Роберт Буссард в 1960 году. По своей сути, это улучшение стандартной термоядерной ракеты, которая использует магнитные поля для сжатия водородного топлива до точки запуска синтеза. Но в случае ПВРД, огромная электромагнитная воронка всасывает водород из межзвездной среды и сливает в реактор как топливо.

По мере того как аппарат набирает скорость, реактивная масса попадает в ограничивающее магнитное поле, которое сжимает ее до начала термоядерного синтеза. Затем магнитное поле направляет энергию в сопло ракеты, ускоряя судно. Поскольку никакие топливные баки не будут его замедлять, термоядерный ПВРД может развить скорость порядка 4% световой и отправиться куда угодно в галактику.

Тем не менее у этой миссии есть масса возможных недостатков. К примеру, проблема трения. Космический аппарат полагается на высокую скорость сбора топлива, но вместе с тем будет сталкиваться с большим количеством межзвездного водорода и терять скорость - особенно в плотных регионах галактики. Во-вторых, дейтерия и трития (которые используются в реакторах на Земле) в космосе немного, а синтез обычного водорода, которого много в космосе, пока нам неподвластен.

Впрочем, научная фантастика полюбила эту концепцию. Самым известным примером является, пожалуй, франшиза «Звездный путь», где используются «коллекторы Буссарда». В реальности же наше понимание реакторов синтеза далеко не так прекрасно, как хотелось бы.

Лазерный парус

Солнечные паруса давно считаются эффективным способом покорения Солнечной системы. Помимо того, что они относительно просты и дешевы в изготовлении, у них большой плюс: им не нужно топливо. Вместо использования ракет, нуждающихся в топливе, парус использует давление радиации звезд, чтобы разгонять сверхтонкие зеркала до высоких скоростей.

Тем не менее, в случае межзвездного перелета, такой парус придется подталкивать сфокусированными лучами энергии (лазером или микроволнами), чтобы разгонять до скорости, близкой к световой. Концепцию впервые предложил Роберт Форвард в 1984 году, физик лаборатории Hughes Aircraft.

Его идея сохраняет преимущества солнечного паруса в том, что не требует топлива на борту, а также и в том, что лазерная энергия не рассеивается на расстоянии так же, как и солнечная радиация. Таким образом, хотя лазерному парусу потребуется некоторое время, чтобы разогнаться до околосветовой скорости, он впоследствии будет ограничен только скоростью самого света.

По данным исследования Роберта Фрисби в 2000 году, директора по исследованиям передовых двигательных концепций в Лаборатории реактивного движения NASA, лазерный парус разгонится до половины световой скорости меньше чем за десять лет. Он также рассчитал, что парус диаметром 320 километров мог бы добраться до Проксимы Центавра за 12 лет. Между тем, парус 965 километров в диаметре прибудет на место всего через 9 лет.

Однако строить такой парус придется из передовых композитных материалов, чтобы избежать плавления. Что будет особенно сложно, учитывая размеры паруса. Еще хуже обстоит дело с расходами. По мнению Фрисби, лазерам потребуется стабильный поток в 17 000 тераватт энергии - примерно столько весь мир потребляет за один день.

Двигатель на антиматерии

Любители научной фантастики хорошо знают, что такое антиматерия. Но если вы забыли, антиматерия - это вещество, состоящее из частиц, которые имеют такую же массу, как и обычные частицы, но противоположный заряд. Двигатель на антиматерии - это гипотетический двигатель, в основе которого лежат взаимодействия между материей и антиматерией для генерации энергии, или создания тяги.

Короче говоря, двигатель на антиматерии использует сталкивающиеся между собой частицы водорода и антиводорода. Испущенная в процессе аннигиляции энергия сравнима по объемам с энергией взрыва термоядерной бомбы в сопровождении потока субатомных частиц - пионов и мюонов. Эти частицы, которые движутся со скоростью одной третьей от скорости света, перенаправляются в магнитное сопло и вырабатывают тягу.

Преимущество такого класса ракет в том, что большую часть массы смеси материи/антиматерии можно преобразовать в энергию, что обеспечивает высокую плотность энергии и удельный импульс, превосходящий любую другую ракету. Более того, реакция аннигиляции может разогнать ракету до половины скорости света.

Такой класс ракет будет самым быстрым и самым энергоэффективным из возможных (или невозможных, но предлагаемых). Если обычные химические ракеты требуют тонны топлива, чтобы продвигать космический корабль к месту назначения, двигатель на антиматерии будет делать ту же работу за счет нескольких миллиграммов топлива. Взаимное уничтожение полукилограмма частиц водорода и антиводорода высвобождает больше энергии, чем 10-мегатонная водородная бомба.

Именно по этой причине Институт перспективных концепций NASA исследует эту технологию как возможную для будущих миссий на Марс. К сожалению, если рассматривать миссии к ближайшим звездным системам, сумма необходимого топлива растет в геометрической прогрессии, и расходы становятся астрономическими (и это не каламбур).

Согласно отчету, подготовленному к 39-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference и Exhibit, двухступенчатая ракета на антивеществе потребует больше 815 000 метрических тонн топлива, чтобы добраться до Проксимы Центавра за 40 лет. Это относительно быстро. Но цена…

Хотя один грамм антивещества производит невероятное количество энергии, производство одного только грамма потребует 25 миллионов миллиардов киловатт-часов энергии и выльется в триллион долларов. В настоящее время общее количество антивещества, которое было создано людьми, составляет меньше 20 нанограммов.

И даже если бы мы могли задешево производить антиматерию, нам потребовался бы массивный корабль, который смог бы удерживать необходимое количество топлива. Согласно докладу доктора Даррела Смита и Джонатана Вебби из Авиационного университета Эмбри-Риддл в штате Аризона, межзвездный корабль с двигателем на антивеществе мог бы набрать скорость в 0,5 световой и достичь Проксимы Центавра чуть больше чем за 8 лет. Тем не менее сам корабль весил бы 400 тонн и потребовал бы 170 тонн топлива из антивещества.

Возможный способ обойти это - создать судно, которое будет создавать антивещество с последующим его использованием в качестве топлива. Эта концепция, известная как Vacuum to Antimatter Rocket Interstellar Explorer System (VARIES), была предложена Ричардом Обаузи из Icarus Interstellar. Опираясь на идею переработки на месте, корабль VARIES должен использовать крупные лазеры (запитанные огромными солнечными батареями), создающие частицы антивещества при выстреле в пустой космос.

Подобно концепции с термоядерным ПВРД, это предложение решает проблему перевозки топлива за счет его добычи прямо из космоса. Но опять же, стоимость такого корабля будет чрезвычайно высокой, если строить его нашими современными методами. Мы просто не в силах создавать антивещество в огромных масштабах. А еще нужно решить проблему с радиацией, поскольку аннигиляция материи и антиматерии производит вспышки высокоэнергетических гамма-лучей.

Они не только представляют опасность для экипажа, но и для двигателя, чтобы те не развалились на субатомные частицы под воздействием всей этой радиации. Короче говоря, двигатель на антивеществе совершенно непрактичен с учетом наших современных технологий.

Варп-двигатель Алькубьерре

Любители научной фантастики, без сомнения, знакомы с концепцией варп-двигателя (или двигателя Алькубьерре). Предложенная мексиканским физиком Мигелем Алькубьерре в 1994 году, эта идея была попыткой вообразить мгновенное перемещение в пространстве без нарушения специальной теории относительности Эйнштейна. Если коротко, эта концепция включает растяжение ткани пространства-времени в волну, которая теоретически приведет к тому, что пространство перед объектом будет сжиматься, а позади - расширяться.

Объект внутри этой волны (наш корабль) сможет ехать на этой волне, будучи в «варп-пузыре», со скоростью намного превышающей релятивистскую. Поскольку корабль не движется в самом пузыре, а переносится им, законы относительности и пространства-времени нарушаться не будут. По сути, этот метод не включает движение быстрее скорости света в локальном смысле.

«Быстрее света» он только в том смысле, что корабль может достичь пункта назначения быстрее луча света, путешествующий за пределами варп-пузыря. Если предположить, что космический аппарат будет оснащен системой Алькубьерре, он доберется до Проксимы Центавра меньше чем за 4 года. Поэтому, если говорить о теоретическом межзвездном космическом путешествии, это, безусловно, наиболее перспективная технология в плане скорости.

Разумеется, вся эта концепция чрезвычайно спорная. Среди аргументов против, например, то, что она не принимает во внимание квантовую механику и может быть опровергнута теорией всего (вроде петлевой квантовой гравитации). Расчеты необходимого объема энергии также показали, что варп-двигатель будет непомерно прожорлив. Другие неопределенности включают безопасность такой системы, эффекты пространства-времени в пункте назначения и нарушения причинности.

Тем не менее в 2012 году ученый NASA Гарольд Уайт заявил, что вместе с коллегами начал исследовать возможность создания двигателя Алькубьерре. Уайт заявил, что они построили интерферометр, который будет улавливать пространственные искажения, произведенные расширением и сжатием пространства-времени метрики Алькубьерре.

В 2013 году Лаборатория реактивного движения опубликовала результаты испытаний варп-поля, которые проводились в условиях вакуума. К сожалению, результаты сочли «неубедительными». В долгосрочной перспективе мы можем выяснить, что метрика Алькубьерре нарушает один или несколько фундаментальных законов природы. И даже если его физика окажется верной, нет никаких гарантий, что систему Алькубьерре можно использовать для полетов.

В общем, все как обычно: вы родились слишком рано для путешествия к ближайшей звезде. Тем не менее, если человечество почувствует необходимость построить «межзвездный ковчег», который будет вмещать самоподдерживающееся человеческое общество, добраться до Проксимы Центавра удастся лет за сто. Если мы, конечно, захотим инвестировать в такое мероприятие.

Что касается времени, все доступные методы кажутся крайне ограниченными. И если потратить сотни тысяч лет на путешествие к ближайшей звезде может нас мало интересовать, когда наше собственное выживание стоит на кону, по мере развития космических технологий, методы будут оставаться чрезвычайно непрактичным. К моменту, когда наш ковчег доберется до ближайшей звезды, его технологии станут устаревшими, а самого человечества может уже не существовать.

Так что если мы не осуществим крупный прорыв в сфере синтеза, антиматерии или лазерных технологий, мы будем довольствоваться изучением нашей собственной Солнечной системы.

Не так давно Мильнер и Хокинг нашумели анонсом своего проекта Breakthrough Starshot. Проект стоит $100 млн, которые будут потрачены на исследование технической возможности полета до Альфы Центавра. Инженерная и исследовательская фаза продлятся некоторое количество лет, после чего разработка самой миссии полета к Альфе Центавра потребует бюджета крупнейшего на сегодня научного эксперимента.

Итак, что же известно на данный момент от разработчиков проекта?


Концепт системы, включая лазерный излучатель и световой парус

Проект Breakthrough Starshot, по словам авторов, - это попытка подойти к космическим путешествиям со стороны Кремниевой Долины.

Он предполагает постройку массива лазеров в высокогорных районах Земли, и создание специальных нанокрафтов - массива космических фемтоспутников , которые разгоняются излучением этих лазеров.

Компоненты системы

Нанокрафты - это роботизированные космические корабли массой порядка граммов, состоящие из двух частей:

1) Электронный модуль StarChip: Закон Мура позволил значительно уменьшить в размерах электронные компоненты. Это позволяет создать граммовые устройства, несущие на себе камеры, фотонные подруливатели, питание, навигационное и коммуникационное оборудование, представляющие собой полностью функциональный космический зонд. При этом стоимость этих зондов при массовом производстве будет равна стоимости смартфона.

4 камеры
Камеры на 2 мегапикселя, массой менее грамма доступны по низкой цене. Их развитие также подчиняется закону Мура, позволяя удваивать количество пикселей для той же массы матрицы каждые два года.

Интересны также потенциальные возможности камер, работающих по принципу плоского массива Фурье-захвата (PFCA). Они не требуют зеркал, линз и других движущихся частей. Состоят из массива полупроводниковых элементов, которые реагируют на свет в зависимости от его угла падения.

По объему PFCA могут быть в 100 тысяч раз меньше самой маленькой фокусной камеры. Впрочем, пока данная технология находится на старте своего пути.


Мона Лиза, снятая камерой PFCA.

Защитное покрытие
Специальное покрытие необходимо для защиты конструкции нанокрафтов от столкновения с частицами в межзвездном пространстве. Один из таких материалов - это бериллиево-медный сплав.
Батарея
Конструкция батареи представляет собой один из самых сложных технических вызовов проекта.

В настоящее время, в качестве основного источника энергии на борту рассматривается плутоний-238 или америций-241. На питание системы отведено 150 грамм. Сюда включена масса радиоизотопа и суперконденсатора, который будет заряжаться от ядерного распада.

Существуют также идеи воспользоваться нагревом фронтальной части поверхности нанокрафтов (из-за взаимодействия с межзвездной пылью). Тепловой источник может обеспечить подачу 6мВт на каждый квадратный сантиметр своей площади во время крейсерской фазы миссии в межзвездном пространстве.

Сам световой парус, возможно, удастся покрыть тонкой пленкой из фотоэлектрического материала, как это было сделано в японской миссии солнечного паруса IKAROS . Это может оказаться очень полезным при приближении к другой звезде на расстояние 2 астрономических единиц. На расстоянии 1 астрономической единицы подобный материал, даже обладая эффективностью всего 10%, будет способен обеспечить 2кВт мощности. Это более чем в 100 тысяч раз превышает мощность радиоактивного источника энергии, и, вероятно, позволит достигнуть значительно более высоких скоростей передачи данных по лазерной связи.

Коммуникация

Ориентация передатчика на Землю
Поиск Земли - достаточно простая задача, учитывая ее близость к Солнцу - очень яркой звезде, если смотреть со стороны Альфы Центавра.

Из-за дифракционного предела, угловой диаметр луча длиной волны 1 микрон на антенне метрового класса, составит около 0.1 угловой секунды. Ориентация такой точности может быть достигнута при использовании фотонных двигателей малой тяги.

Посылка изображений с помощью лазера, используя парус как антенну
Изображения целевых планет могут передаваться одноваттным лазером на борту, в импульсном режиме. При подходе к цели, парус будет использоваться для фокусировки лазерного сигнала.

Например, для паруса размером 4м, дифракционный предел размера пятна на Земле будет порядка 1000м . Примерно такого же масштаба планируется делать принимающий массив антенн. Использование паруса в качестве оптической системы может потребовать разных форм паруса на старте миссии (при разгоне) и во время коммуникационной фазы. Для более эффективной передачи информации, при приближении к цели, парусу может быть придана форма линзы Френеля. Из-за доплеровского эффекта при сдвиге нанокрафтов относительно Земли, необходимо использование волны лазера короче, чем у системы запуска - это позволит поддерживать высокую скорость передачи через атмосферу нашей планеты.

Получение изображений с помощью массива лазерных излучателей
Недавние успехи группы MIL Lincoln Labs и Лаборатории Реактивного Движения показали возможность детектировать единичные фотоны, испускаемые лазером с очень больших расстояний. В настоящее время рекордсменом является система LADEE, которая способна работать на лунных расстояниях. Она использует методику криогенно охлажденных нанотрубок. Это позволяет передавать 2 бита на фотон. Система использует 10см оптику на космическом корабле и однометровый телескоп на земле.

Массив лазерных излучателей, задействованый при разгоне нанокрафтов, будет использована в инверсном режиме, как массив принимающих антенн.

Солнечный парус

Целостность паруса под тягой
На этапе исследования предполагается использование в миссии 100 гигаватного лазера. Как такое излучение повлияет на солнечный парус?

Самый совершенный отражающий материал на сегодня - это диэлектрическое зеркало - композитный материал с толщиной слоя подобранной под длину волны.

Диэлектрическое зеркало способно снижать количество поглощаемого тепла на 5 порядков, отражая 99.999% излучения.
Для лазера 100 ГВатт и паруса 4х4м - это значит что каждый квадратный метр паруса будет нагреваться энергией в 60 кВт. Это очень много - около 50 электрических чайников на полной мощности. Такую мощность рассеять излучением трудно. Но, как утверждают разработчики, это нагреет парус, но не расплавит его. Предполагается, что используя полностью диэлектрический парус с оптимизированными материалами будет возможно снизить поглощение ниже 9 порядков от приходящего излучения.

Рассматриваются варианты использования новых материалов вроде графена.

Возможно также использование материалов с низким поглощением, даже без высокой отражающей способности (например, стекло). Подобные материалы применяются в оптоволоконной оптике при высоких нагрузках.

Кроме защиты со стороны паруса, электроника модуля StarChip должна быть защищена от набегающего потока. Это может быть достигнуто сочетанием геометрии (ориентируя электронику «в профиль», с низким поперечным сечением) и покрытием самых важных компонентов специальной защитой. Такими покрытиями могут выступать упоминавшиеся многослойные диэлектрические решения, уже продемнострированные в лабораториях. Слабо поглощающий материал паруса вместе с ограниченным использованием высокоотражающего материала для защиты электроники, будет защищать StarChip не превышая граммового масштаба массы модуля. Для дальнейшего производства изучается конструкция из кремниевых микрокубов на подложке из диоксида кремния.

Устройство
Необходимо разработать скелет паруса, который будет держать нагрузку при разгоне устройства, быть устойчивым к взаимодействию с межзвездной средой, и будет способен менять форму паруса. В данный момент рассматривается ряд композитных материалов на основе графена, которые способны менять свою длину в зависимости от электрического напряжения, приложенного к ним. Ранее было показано, что центробежное ускорение крошечных масс по краям может натягивать парус.
Удержание на луче
Форма луча и устройства светового паруса должны быть оптимизированы для стабильности на фазе запуска. В этот период порядка 10 минут, парус получает 1 тераджоуль световой энергии. По этой причине, даже мелкие различия свойств паруса или неоднородности луча, переместят центр давления с центра масс паруса, и сместят его вектор тяги.

Современная индустрия оптических покрытий при массовом производстве смартфонов и телескопной оптики уже находится на приемлемом для миссии уровне качества. Но конечный материал паруса пока не существует и должен быть разработан.

Лазерный излучатель

Стоимость
Оценка ориентировочной стоимости лазерного массива на Земле основана на экстраполяции двух последних десятилетий, а также на перспективах удешевления при массовом производстве.

Стоимость лазерных усилителей снижается экспоненциально с 1990г по 2015г, сокращаясь вдвое каждые полтора года. Если тренд продолжится, строительство большого излучателя в ближайшие десятилетия обойдется на несколько порядков дешевле.

Пока разработчики сравнивают стоимость с крупнейшим научным проектом в мире. Это может быть, например, МКС (стоимостью $157 млрд) или экспериментальный термоядерный реактор ITER ($15 млрд).

Фаза
Для проверки возможностей системы был изучен случай с парусом метрового масштаба. Например, для фокусировки луча света на парусе 4х4м на расстоянии в 200 тысяч километров, потребуется угол фокусировки в 2 нанорадиана (0.4 угловых миллисекунд). Это дифракционный предел для километрового лазерного излучателя, работающего на длине волны в 1 микрон.

Интерферометрия для Event Horizon Telescope продемонстрировала возможность достижения суб-нанорадианной точности на длине волны 1мм.

Атмосфера
Атмосфера вводит два эффекта:

Поглощение (нарушение целостности передачи)
- снижение качества луча (размывание луча)

Передающая способность атмосферы на длине волны 1 мкм очень хороша - более 90% для объектов расположенных высоко в горах. При таком расположении установки это снизит размывание луча в атмосферой, что позволит адаптивной оптике максимально приблизиться к дифракционному пределу. Атмосферная турбулентность, которая размывает луч, примерно в 4 раза ниже на высоте 5 км, чем на уровне моря. Еще больше нивелировать действие атмосферы можно коррекцией режима работы лазерных излучателей с помощью маяка в космосе.

Проект Breakthrough Starshot хочет достичь дифракционного предела для оптических лазерных систем в 0.2-1 км. Это на 1-2 порядка лучше существующих решений, однако нет никаких фундаментальных ограничений в достижении этой цели.

Запуск:

Точность наведения на метровый парус
Лазерный излучатель должен фокусироваться в пятно на парусе меньше чем размер самого паруса на орбите 60 000 км над землей.
Наведение лазера должно быть согласовано с положением звездной системы Альфы Центавра так, чтобы пролет системы проходил в пределах двух астрономических единиц. Использование фотонных двигателей малой тяги позволит корректировать курс на 1-2 астрономических единицы.

В задаче позиционирования луча основной является проблема удержания паруса на луче. Это зависит от размеров паруса и расстояния до него. Для метрового паруса рабочее расстояние для запуска может достигать нескольких миллионов километров. Точность прицеливания, необходимая на такой дистанции составляет несколько угловых миллисекунд. Существует несколько способов решения этой проблемы.
Модель атмосферы калибруют с помощью радара, лазерного луча и оптических измерений в реальном времени. Это позволит достичь необходимой точности позиционирования.

Большинство земных телескопов (например, телескоп Кека) имеют точность порядка нескольких угловых секунд и ограничено могут отслеживать объекты в режиме 100 угловых миллисекунд. Для целей миссии необходимо значительное улучшение точности.
Тем не менее, генерация лазерного луча системой с фазированной решеткой, с системой отслеживания сигнала маяка (для коррекции влияния атмосферы) космического аппарата может позволить достичь необходимой точности.

Удержание на паруса на луче
Существует ряд эффектов, которые делают эту задачу сложной. Это нестабильность луча, режимы работы лазера, силы действующие на парус, нагревание паруса, неоднородности атмосферы, вызванные энергией излучателей.

Вышеописанные проблемы можно решать вращением паруса и регуляция формы как паруса, так и пучка лучей, приходящих на него. Обратная связь поможет работе лазерных излучателей, но короткое время полета требует самостоятельной стабилизации системы.

Один из перспективных подходов заключается в том, чтобы придавать парусу специальную форму, стабилизирующую его положение на луче. Т.е., при вращении, на парус будут воздействовать такие крутящие моменты и силы, которые будут стремиться восстановить его ориентацию. Высокочастотная дрожь снизит общее количество передаваемой парусу энергии, но хорошая динамика паруса может снизить его восприимчивость к помехам, выше определенной частоты.

Поскольку для формирования луча будет использоваться массив с фазированной решеткой, профиль пучка может иметь такую форму, чтобы максимизировать способность паруса сохранять свою собственную позицию на луче, даже без механизма обратной связи.

Производство и хранение энергии
Производство и хранение энергии является технологическим вызовом.
Генерация 100 ГВт мощности и доставка ее в течение нескольких минут вполне достижимо на современном уровне технологий. Электростанции на природном газе могут генерировать энергию по цене $0.1 за киловатт-час.
В настоящее время так же доступны батареи и суперконденсаторы, которые способны обеспечить необходимую емкость хранения по разумной цене.
Точное определение орбитальной позиции экзопланеты
Для того, чтобы доставить нанокрафт к экзопланете с точность до 1 астрономической единицы, может потребоваться точный учет всех массивных тел вблизи траектории полета.
Часть информации может быть собрана первыми миссиями проекта и учтена в последующих запусках. Также принимаются усилия для лучшего понимания эфемерид - орбитальных позиции крупных объектов в конкретные моменты времени, способных повлиять на траекторию движения. Это включает в себя сотрудничество с крупнейшими телескопами в южном полушарии, включая Very Large Telescopes и Gemini.

Крейсерский этап:

Межзвездная пыль
Основываясь на оценках плотности пыли в ближайшей к нам межзвездной среде, за время путешествия к Альфе Центавра каждый квадратный сантиметр фронтальной площади поперечного сечения электронного модуля StarChip и светового паруса, столкнется примерно с 1000 пылевых частиц размером от 100 нанометров и выше. Тем не менее, вероятность столкновения с частицей в 1 микрометр за все время полета, составляет около 10%. А вероятность встретить более крупные частицы - незначительна.

Пылевая частица размером 100 нанометров, двигающаяся на скорость в 20% от скорости света, проникнет в электронный модуль на глубину порядка 0.4мм. Для оценки эффекта, приведены расчеты для модуля, размерами 10см х 0.1мм. Площадь поперечного сечения такого модуля составляет 0.1 см 2 . Защитное покрытие из бериллиевой бронзы, нанесенное на переднюю часть такого модуля, может обеспечить его защиту от воздействия пыли и эрозии. При необходимости, геометрия StarChip может быть изменена (например в форме «иглы») для дальнейшего уменьшения площади поперечного сечения.

Сам парус, для минимизации повреждений, может быть свернут в более обтекаемую конфигурации во время крейсерской фазы полета.

Импульс от удара частицы размером 100 нм сравнительно мал, и может быть компенсирован фотонными подруливателями.

Влияние межпланетной пыли внутри солнечной системы незначительно по сравнению с межзвездной пылью. О наличии пыли в системе Альфы Центавра известно мало.

Межзвездная среда и космические лучи
Средняя длина свободного пробега и ларморовский радиус частиц межзвездной плазмы намного больше, чем размер нанокрафта. Это означает, что такие частицы будут влиять на стенки независимо друг от друга, не образуя ударный шок.

Протоны из межзвездной плазмы на скорости 20% от скорости света, будут воздействовать на нанокрафт с кинетическими энергиями 18 МэВ, а электроны будут иметь энергию 10.2 кэВ. При этом не имеет значения, объединены ли протон и электрон в атом водорода, или прилетают по отдельности. Будет происходить эрозия поверхности нанокрафта из-за распыления. Количество распыленных таким образом атомов будет составлять порядка 1000 на см 2 . Полная потеря массы передней поверхности устройства составит лишь несколько слоев.

Протоны на энергии 18 МэВ будут проникать на глубину порядка нескольких миллиметров. Поэтому будет необходим защитный слой, способный остановить такие частицы, чтобы избежать повреждения электроники.

Космические лучи гораздо менее редки, чем межзвездные протоны, а значит могут быть проигнорированы. Столкновения с более тяжелыми элементами должны быть смягчены защитным покрытием: ядра гелия имеют энергии порядка 72 МэВ и их количество составляет около 10% от количества свободных протонов. Ядра элементов углерода, азота и кислорода несут энергии в 200-300 МэВ и присутствуют в количестве 0.01% от общего количества.
Для разработки технологий защиты, необходимо проведение лабораторных экспериментов для ионов, движущихся со скоростью 20% от скорости света и сталкивающихся с твердым телом.

Столкновения с межзвездными ионами и электронами, теоретически, может иметь свои преимущества: они могли бы придать нанокрафту потенциал до 10 кВ (кинетическая энергия на электрон). Фронтальная поверхность нанокрафтов будет нагреваться со скоростью 6 мВт на см 2 , что даст небольшой термоэлектрический источник энергии при путешествии в межзвездной среде.

Альфа Центавра — цель полетов космических кораблей во многих произведениях, принадлежащих к жанру научной фантастики. Это ближайшая к нам звезда относится к небесному рисунку, воплощающему легендарного кентавра Хирона, согласно греческой мифологии, бывшего учителем Геракла и Ахилла.

Современные исследователи, как и писатели, неустанно возвращаются в мыслях к этой звездной системе, поскольку она не только первый кандидат на длительную космическую экспедицию, но и возможный обладатель населенной планеты.

Структура

Звездная система Альфа Центавра включает в себя три космических объекта: две звезды с аналогичным названием и обозначениями А и В, а также Для подобных звезд характерно близкое расположение двух компонентов и удаленное — третье. Проксима является как раз последним. Расстояние до Альфа Центавра со всеми ее элементами составляет примерно 4,3 Звезд, расположенных ближе к Земле, на данный момент нет. При этом быстрее всего лететь до Проксимы: нас разделяют всего 4,22 световых года.

Солнечные родственники

Альфа Центавра А и В отличаются от компаньонки не только расстоянием до Земли. Они в отличие от Проксимы во многом похожи на Солнце. Альфа Центавра А или Ригель Кентаврус (в переводе означает «нога Кентавра») более яркий компонент пары. Толиман А, как еще называют эту звезду, — желтый карлик. С Земли его отлично видно, так как он обладает нулевой звездной величиной. Этот параметр делает ее четвертой в списке самых ярких точек ночного неба. Размер объекта практически также совпадает с солнечным.

Звезда Альфа Центавра В уступает нашему светилу по массе (примерно 0,9 от величин соответствующего параметра Солнца). Она относится к объектам первой звездной величины, а уровень ее светимости приблизительно в два раза меньше, чем у главной звезды нашего кусочка Галактики. Расстояние между двумя соседними компаньонами составляет 23 астрономические единицы, то есть они расположены в 23 раза дальше друг от друга, чем Земля от Солнца. Толиман А и Толиман В вместе вращаются вокруг одного центра масс с периодом в 80 лет.

Недавнее открытие

Ученые, как уже говорилось, возлагают немалые надежды на обнаружение жизни в окрестностях звезды Альфа Центавра. Планеты, предположительно существующие здесь, могут походить на Землю аналогично тому, как сами компоненты системы напоминают наше светило. До недавнего времени, однако, подобных космических тел вблизи звезды обнаружено не было. Расстояние не позволяет непосредственно наблюдать планеты. Получение доказательств существования землеподобного объекта стало возможным только с усовершенствованием техники.

С помощью метода лучевых скоростей ученые смогли обнаружить совсем небольшие колебания Толимана В, возникающие под воздействием гравитационных сил планеты, вращающейся вокруг него. Таким образом, были получены доказательства существования, по крайней мере, одного подобного объекта в системе. Колебания, вызываемые планетой, проявляются в виде ее смещения на 51 см в секунду вперед и затем назад. В условиях Земли подобное движение пусть даже самого большого тела было бы очень заметно. Однако на расстоянии 4,3 световых лет обнаружение такого колебания кажется невозможным. Тем не менее, оно было зарегистрировано.

Сестра Земли

Найденная планета обращается вокруг Альфы Центавра В за 3,2 дня. Она расположена очень близко к звезде: радиус орбиты в десять раз меньше соответствующего параметра, характерного для Меркурия. Масса этого космического объекта близка к земной и составляет примерно 1,1 от массы Голубой планеты. На этом схожесть заканчивается: близкое расположение, по мнению ученых, позволяет предположить, что возникновение жизни на планете невозможно. Энергия светила, достигающая ее поверхности, слишком сильно нагревает ее.

Ближайшая

Третья составляющая делающая знаменитым все созвездие, — Альфа Центавра С или Проксима Центавра. Название космического тела в переводе означает «ближайшая». Проксима стоит от своих компаньонов на расстоянии, равном 13 000 световых лет. Это объект одиннадцатой красный карлик, маленький (примерно в 7 раз меньше Солнца) и очень тусклый. Увидеть его невооруженным глазом невозможно. Для Проксимы характерно «беспокойное» состояние: звезда способна за несколько минуть изменить величину своего блеска в два раза. Причина такого «поведения» во внутренних процессах, протекающих в недрах карлика.

Двойственное положение

Проксима на протяжении долгого времени считалась третьим элементов системы Альфа Центавра, делающим оборот вокруг пары А и В примерно за 500 лет. Однако в последнее время набирает силу мнение, что красный карлик не имеет к ним отношения, и взаимодействие трех космических тел — временное явление.

Поводом для сомнений стали данные, гласившие, что сплоченная пара звезд не имеет достаточной притяжения, чтобы удерживать еще и Проксиму. Полученные в начале 90-х годов прошлого века сведения долго нуждались в дополнительных подтверждениях. Последние наблюдения и вычисления ученых однозначного ответа не дали. По предположениям, Проксима все-таки может быть частью тройной системы и двигаться вокруг общего гравитационного центра. При этом ее орбита должна походить на вытянутый овал, причем самая удаленная точка от центра — та, в которой звезду наблюдают сейчас.

Проекты

Как бы то ни было, а именно к Проксиме планируется долететь в первую очередь, когда это станет возможным. Путешествие до Альфы Центавра при современном уровне развития космической техники может продлиться больше 1000 лет. Такой временной отрезок просто немыслим, потому ученые активно занимаются поисками вариантов его сокращения.

Группа исследователей NASA во главе с Гарольдом Уайтом разрабатывает проект «Скорость», результатом которого должен стать новый двигатель. Его особенность будет заключаться в возможности преодоления скорости света, благодаря чему полет от Земли до ближайшей звезды составит всего две недели. Подобное чудо техники станет настоящим шедевром сплоченной работы физиков-теоретиков и экспериментаторов. Пока, однако, корабль, преодолевающий скорость света, — дело будущего. По оценкам Марка Миллиса, некогда работавшего в NASA, подобные технологии, при условии существующей на данный момент скорости движения прогресса, станут реальностью не раньше чем через двести лет. Сокращение срока возможно, только если будет сделано открытие, способное кардинально изменить существующие представления о космических полетах.

Сейчас Проксима Центавра и ее компаньоны остаются амбициозной целью, недостижимой в ближайшем будущем. Техника, тем не менее, постоянно совершенствуется, и новые сведения о характеристиках звездной системы — тому наглядные доказательства. Уже сегодня ученые могут многое из того, о чем 40-50 лет назад и мечтать не приходилось.

ЛЕКЦИЯ:

"ЧЕРЕЗ СЕМЬ МИЛЛИОНОВ ЛЕТ"

Лектор Моисеев И.М.

ССО "Энергия" МВТУ им. Баумана

пос. Усть-Абакан

Уважаемые товарищи! Хочу сразу предупредить, что речь пойдет о спорных и довольно-таки отвлеченных вопросах. Многое из того, что мне хочется вам рассказать, не является насущной проблемой сегодняшнего дня. Однако, понимание задачи, о которой я буду говорить, и возможности её решения имеет серьезный мировоззренческий характер.

Нам придется оперировать очень большими, по нашим меркам, числами. Мне хочется, чтобы вы хорошо их осознали, напоминаю: миллион - это тысяча тысяч, миллиард - тысяча миллионов. Чтобы просто посчитать до тысячи понадобиться 3 часа. До миллиона - 125 суток. До миллиарда - 350 лет. Представили? Ну что же. Тогда можно начинать.

20 миллиардов лет назад возникла Вселенная.

Где-то 5-6 миллиардов лет назад вспыхнуло наше Солнце.

4 миллиарда лет назад остыл расплавленный шар, который сейчас называется планетой Земля. Примерно миллион лет назад появился Человек.

Всего несколько тысяч лет существуют государства.

Около ста лет назад было изобретено радио и, наконец, 27 лет назад началась космическая эра.

Это время. Теперь поговорим о пространственных масштабах.

Как известно, луч света проходит в секунду 300 тысяч км. Мы воспользуемся скоростью света для измерения расстояний. Для того, чтобы луч света прошел расстояние равное длине экватора, ему понадобится 1/7 секунды. Чтобы достичь Луны - немногим больше 1 секунды. Расстояние от Земли до Солнца свет проходит за 8 минут. До границы Солнечной системы лучу света придется добираться более 5 часов. А вот до ближайшей звезды - Проксимы Центавра - лучу света лететь более 4-х лет. 75 тысяч лет понадобится чтобы луч света достиг центра нашей Галактики. 40 миллиардов лет понадобится лучу света, чтобы пересечь нашу Вселенную.

Мы живем на планете Земля. Наша планета является очень малой частью Солнечной системы, в которую входит I звезда - Солнце, 9 больших планет, десятки спутников планет, миллионы комет и астероидов и множество других материальных тел, помельче. Наша солнечная система находится на периферии Галактики, громадной звездной системе, в которую входит 10 миллиардов звезд, подобных Солнцу. Таких галактик во Вселенной - тысячи

миллиардов. Это - мир, в котором мы живем. Теперь, когда мы это все представили, настало время поставить первую задачу.

Итак. Нам надо.добраться до ближайшей звездной системы - системы Альфа Центавра. В эту систему входит 3 звезды: Альфа Центавра А - звезда похожая на наше Солнце, Альфа Центавра В и Проксима Центавра - небольшие красные звезды. Весьма вероятно, что в эту систему входят и планеты. Расстояние до неё - 4,3 световых года. Если бы мы могли двигаться со скоростью света, нам бы понадобилось почти 9 лет для путешествия туда и обратно. Но мы не можем двигаться со скоростью света. В настоящее время в нашем распоряжении есть только химические ракеты, их максимальная достигнутая скорость 20 км/сек. С этой скоростью до Альфы Центавра надо лететь более 70 тысяч лет. В нашем распоряжении есть электроракетные и ядерно-тепловые двигатели. Однако, первые из-за малой тяги не могут разогнать до приличных скоростей свой собственный вес, а вторые, грубо говоря, всего вдвое лучше химических. Писатели-фантасты любят посылать своих героев к звездам на фотонных, или, более правильно, аннигиляционных ракетах. Аннигиляционыые двигатели теоретически могут разогнать ракету до скорости, очень близ ной к скорости света, всего за один год. Но для того, чтобы делать аннигиляционные двигательные установки, нужно большое количество антивещества, а как его получить - совершенно неизвестно. Кроме того, совершенно неясна конструкция такого двигателя. А нам нужен реальный двигатель. Такой, чтобы мы знали, как его сделать и могли бы начать работу по его созданию прямо сейчас. А то ведь, если мы будем ждать, пока найдут неизвестные сейчас принципы мы можем остаться у разбитого корыта. К счастью такой двигатель существует. Правда, пока только на бумаге, но если мы с вами захотим, то сможем создать его и в металле. Это импульсный термоядерный ракетный двигатель. Давайте познакомимся с ним поподробнее. В этом двигателе с большой частотой сгорают маленькие порции термоядерного горючего. При этом выделяется очень большая энергия, продукты реакции - элементарные частицы - разлетаются с большой скоростью и толкают ракету вперед. Остановимся на основных проблемах, связанных с созданием такого двигателя и на путях их решения.

Проблема номер один - проблема поджига. Надо поджечь, то есть инициировать термоядерную реакцию в маленькой, не более 10 миллиграмм весом, таблетке термоядерного топлива. Такая таблетка обычно называется мишенью. Для того, чтобы реакция шла достаточно интенсивно, температура мишени должна достигать сотен миллионов градусов. Причем, чтобы успела прореагировать большая часть мишени, этот нагрев надо осуществить за очень короткое время. /Если мы будем нагревать медленно, мишень успеет испариться, так и не сгорев./ Расчеты и эксперименты показывают, что в мишень надо вложить энергию в один миллион джоулей за время в одну миллиардную секунды. Мощность такого импульса равна мощности 200 тысяч Красноярских ГЭС. А вот потребляемая мощность будет уже не так велика - 100 тысяч киловатт, если мы будем взрывать 100 мишеней в секунду. Первый вариант решения проблемы поджига нашел известный советский физик Басов. Он предложил поджигать мишени лучом лазера, в котором действительно можно сконцентрировать требуемую мощность. В этой области ведутся интенсивные работы и в недалеком будущем будут пущены первые термоядерные электростанции, работающие на этом принципе. Существуют и другие варианты решения этой проблемы, но они пока мало исследованы.

Проблема номер два - проблема камеры сгорания. При сгорании наших мишеней будет образовываться большое число элементарных частиц, несущих большую энергию, и мощное электромагнитное излучение, причем все это разлетается во все стороны. А нам нужно направить как можно больше продуктов реакции в одну сторону - против движения нашей ракеты - только в этом случае ракета сможет набирать скорость. Эту проблему мы сможем решить только с помощью магнитного поля. Магнитное поле определенной силы может изменить траектории продуктов реакции и направить их в нужном направлении. Такое поле мы создать можем.

Проблема номер три - проблема радиаторов. Электромагнитное излучение не поддается управлению магнитным полем. Это излучение поглощается элементами конструкции двигателя и преобразуется в тепло, которое должно быть сброшено в космос. Сброс избыточного тепла обычно осуществляется с помощью радиаторов - больших тонких пластин, набранных из тепловых трубок - простых устройств, позволяющих передавать тепло на большие расстояния. Однако, для наших условий, масса такой системы оказывается непозволительно большой.

Выход нашелся и здесь. Предложено применять для сброса тепла потоки маленьких твердых частиц или капель жидкости, нагретых до высокой температуры. Такие устройства новы, но вполне осуществимы.

При проектировании нашего двигателя возникнет еще много проблем, но все они разрешимы, причем, что важно, разрешимы на современном уровне развития науки и техники.

Представим себе двигатель в целом. Основу его составляет камера сгорания - усеченный конус, размером в несколько десятков метров. На оси этого конуса 100 раз в секунду происходят термоядерные взрывы, силой в несколько тонн тротила каждый. Реактивная струя истекает из широкого основания конуса. Этот конус образован двумя кольцами соленоидов. Стенок нет. Внутри конуса сильное магнитное поле. На верхнем соленоиде установлена лазерная система под-жига, система подачи мишеней в камеру сгорания, система отбора электроэнергии, необходимая для питания лазерной установки. /Для этого отбирается часть энергии взрывов./ По боковым образующим конуса текут струи жидкости - это радиатор. Для обеспечения необходимой тяги нам понадобится установить на нашей ракете около 200 таких двигателей.

Двигательную установку мы сделали. Теперь поговорим о полезной нагрузке. Наш аппарат будет пилотируемым. Поэтому основной частью будет обитаемый отсек. Он может быть выполнен в форме гантели. "Гантель" будет иметь размеры в две-три сотни метров. Она будет вращаться вокруг своей поперечной оси для создания искусственной силы тяжести. Со всех сторон она будет окружена термоядерным топливом, которое защитит экипаж от космического излучения. Кроме обитаемого отсека в полезную нагрузку войдут система энергообеспечения, система связи, вспомогательные системы.

Как видите, в постройке межзвездного космического корабля нет ничего невозможного, просто много сложного. Все проблемы преодолимы. Сейчас я познакомлю вас с характеристиками корабля, полученными в результате предварительного проектирования.

Масса на старте

млн тонн

Масса двигателя

тыс тонн

Масса полезной нагрузки

тыс тонн

Максимальная скорость

скорости света

Время полета

лет

Экипаж

1000

человек

Такой корабль позволит нам долететь до системы Альфа Центавра.

Прошу обратить внимание - только долететь. Вернуться он не сможет. Легко посчитать, что при сохранении той же конструкции, для того, чтобы иметь возможность вернуться наш корабль на старте должен весить 8 миллиардов тонн. Это явно превышает наши возможности. Да и зачем возвращаться? Всю новую - и очень огромную, надо заметить - информацию мы можем передать по радио. А нам надо будет остаться в системе Альфа Центавра, высадиться на планеты и начать их освоение.

Как мы это будем делать? Есть ли такая возможность? Да, есть. Мы запускаем из Солнечной системы, скажем, сто кораблей. Сто тысяч добровольцев. Через 60 лет они, их дети и внуки прибудут в систему Альфы Центавра и выйдут на орбиту вокруг самой удобной для освоения планеты. После разведки, люди начнут переделку всей планеты, ведь вряд ли она окажется копией нашей Земли. Если она будет чересчур горячей, можно закрыть ее от звезды пылевым экраном. Если чересчур холодной - направить на нее дополнительную энергию с помощью больших и очень легких зеркал, можем мы сделать такие. Мы можем переделать и атмосферу. Например, как это предложил сделать Карл Саган /тот самый, который недавно послал письмо К.У.Черненко, в котором выражал свою обеспокоенность планами милитаризации космического пространства. Ответ Черненко публиковался тогда во всех газетах./ - он предложил забросить в атмосферу другой планеты специально подобранные микроорганизмы которые будут поглощать углекислый газ и выделять кислород. Мы, в принципе, можем так же создать искусственные механизмы, которые способны репродуцироваться /размножаться/ и быстро могут переделать атмосферу и поверхностный слой любой планеты. Все это не просто, но возможно. Когда мы мало-мальски освоимся в новой системе, мы можем сделать следующий шаг - запустить новую эскадру кораблей к новой звездной системе, с теми же целями.

И так далее. А вот теперь - самое главное. Кульминационный пункт. Действуя таким образом, мы за СЕМЬ МИЛЛИОНОВ ЛЕТ можем освоить всю нашу Галактику. Семь миллионов лет по масштабам Вселенной - ничтожно малый срок. И через семь миллионов лет, не больше, вся наша Галактика, эта огромная система с миллиардами планетных систем, станет большим домом Человечества. Ради такой цели стоит поработать. Конечно, проблем самого разного рода здесь, конечно, больше, чем решений. Но, повторяю, все их можно решить. И я не сомневаюсь - они будут разрешены.

Единственное, что может остановить Человечество на его звездном пути - ядерная война. Те же средства, которые позволяют Человечеству выйти к звездам, могут уничтожить его в самом начале пути. Конечно, мне не нужно вас агитировать за мир. Но я позволю себе напомнить вам, что сейчас активная борьба за мирное будущее Человечества - это единственное, что может спасти не только нашу жизнь, но и огромное будущее нашего Человечества.

19:44 30/01/2016

0 👁 1 060

В какой-то момент жизни каждый из нас задавал этот вопрос: как долго лететь к ? Можно ли осуществить такой перелет за одну человеческую жизнь, могут ли такие полеты стать нормой повседневности? На этот сложный вопрос очень много ответов, в зависимости от того, кто спрашивает. Некоторые простые, другие сложнее. Чтобы найти исчерпывающий ответ, слишком многое нужно принять во внимание.

К сожалению, никаких реальных оценок, которые помогли бы найти такой ответ, не существует, и это расстраивает футурологов и энтузиастов межзвездных путешествий. Нравится нам это или нет, космос очень большой (и сложный), и наши технологии все еще ограничены. Но если мы когда-нибудь решимся покинуть «родное гнездышко», у нас будет несколько способов добраться до ближайшей звездной системы в нашей .

В будущем, если человечество желает покинуть Солнечную систему, у нас будет огромный выбор звезд, на которые мы могли бы поехать, и многие из них вполне могут располагать благоприятными для жизни условиями. Но куда мы отправимся и сколько времени у нас займет дорога туда? Не забывайте, что все это всего лишь домыслы, и нет никаких ориентиров для межзвездных путешествий в настоящее время. Ну, как говорил Гагарин, поехали!

Дотянуться до звезды

Как уже отмечалось, ближайшая звезда к нашей Солнечной системе - это Проксима Центавра, и поэтому имеет большой смысл начать планирование межзвездной миссии именно с нее. Будучи частью тройной звездной системы Альфа Центавра, Проксима находится в 4,24 световых лет (1,3 парсек) от Земли. Альфа Центавра - это, по сути, самая яркая звезда из трех в системе, часть тесной бинарной системы в 4,37 световых лет от Земли - тогда как Проксима Центавра (самая тусклая из трех) представляет собой изолированный красный карлик в 0,13 световых лет от двойной системы.

И хотя беседы о межзвездных путешествиях навевают мысли о всевозможных путешествиях «быстрее скорости света» (БСС), начиная от варп-скоростей и червоточины до подпространственных двигателей, такие теории либо в высшей степени вымышлены (вроде двигателя Алькубьерре), либо существуют лишь в научной фантастике. Любая миссия в глубокий космос растянется на поколения людей.

Итак, если начинать с одной из самых медленных форм космических путешествий, сколько времени потребуется, чтобы добраться до Проксимы Центавра?

Современные методы

Вопрос оценки длительности перемещения в космосе куда проще, если в нем замешаны существующие технологии и тела в нашей Солнечной системе. К примеру, используя технологию, используемую миссией «Новых горизонтов», 16 двигателей на гидразиновом монотопливе, можно добраться до всего за 8 часов и 35 минут.

Есть также миссия SMART-1 Европейского космического агентства, которая двигалась к Луне с помощью ионной тяги. С этой революционной технологией, вариант которой использовал также космический зонд Dawn, чтобы достичь Весты, миссии SMART-1 потребовался год, месяц и две недели, чтобы добраться до Луны.

От быстрого ракетного космического аппарата до экономного ионного двигателя, у нас есть парочка вариантов передвижения по местному космосу - плюс можно использовать или как огромную гравитационную рогатку. Тем не менее, если мы планируем выбраться чуть подальше, нам придется наращивать мощь технологий и изучать новые возможности.

Когда мы говорим о возможных методах, мы говорим о тех, что вовлекают существующие технологии, или о тех, которых пока не существуют, но которые технически осуществимы. Некоторые из них, как вы увидите, проверены временем и подтверждены, а другие пока остаются под вопросом. Вкратце, они представляют возможный, но очень затратный по времени и финансам сценарий путешествия даже к ближайшей звезде.

Ионное движение

Сейчас самой медленной и самой экономичной формой двигателя является ионный двигатель. Несколько десятилетий назад ионное движение считалось предметом научной фантастики. Но в последние года технологии поддержки ионных двигателей перешли от теории к практике, и весьма успешно. Миссия SMART-1 Европейского космического агентства - пример успешно проведенной миссии к Луне за 13 месяцев спирального движения от Земли.

SMART-1 использовала ионные двигатели на солнечной энергии, в которых электроэнергия собиралась солнечными батареями и использовалась для питания двигателей эффекта Холла. Чтобы доставить SMART-1 на Луну, потребовалось всего 82 килограмма ксенонового топлива. 1 килограмм ксенонового топлива обеспечивает дельта-V в 45 м/с. Это крайне эффективная форма движения, но далеко не самая быстрая.

Одной из первых миссий, использовавших технологию ионного двигателя, была миссия Deep Space 1 к Боррелли в 1998 году. DS1 тоже использовал ксеноновый ионный двигатель и потратил 81,5 кг топлива. За 20 месяцев тяги DS1 развил скорости в 56 000 км/ч на момент пролета кометы.

Ионные двигатели более экономичны, чем ракетные технологии, поскольку их тяга на единицу массы ракетного топлива (удельный импульс) намного выше. Но ионным двигателям нужно много времени, чтобы разогнать до существенных скоростей, и максимальная скорость зависит от топливной поддержки и объемов выработки электроэнергии.

Поэтому, если использовать ионное движение в миссии к Проксиме Центавра, двигатели должны иметь мощный источник энергии (ядерная энергия) и большие запасы топлива (хотя и меньше, чем обычные ракеты). Но если отталкиваться от допущения, что 81,5 кг ксенонового топлива переводится в 56 000 км/ч (и не будет никаких других форм движения), можно произвести расчеты.

На максимальной скорости в 56 000 км/ч Deep Space 1 потребовалось бы 81 000 лет, чтобы преодолеть 4,24 световых года между Землей и Проксимой Центавра. По времени это порядка 2700 поколений людей. Можно с уверенность сказать, что межпланетный ионный двигатель будет слишком медленным для пилотируемой межзвездной миссии.

Но если ионные двигатели будут крупнее и мощнее (то есть скорость исхода ионов будет значительно выше), если будет достаточно ракетного топлива, которого хватит на все 4,24 световых года, время путешествия значительно сократится. Но все равно останется значительно больше срока человеческой жизни.

Гравитационный маневр

Самый быстрый способ космических путешествий - это использование гравитационного маневра. Этот метод включает использование космическим аппаратом относительного движения (то есть орбиту) и гравитации планеты для изменения пути и скорости. Гравитационные маневры являются крайне полезной техникой космических полетов, особенно при использовании Земли или другой массивной планеты (вроде газового гиганта) для ускорения.

Космический аппарат Mariner 10 первым использовал этот метод, используя гравитационную тягу для разгона в сторону в феврале 1974 года. В 1980-х зонд «Вояджер-1» использовал Сатурн и Юпитер для гравитационных маневров и разгона до 60 000 км/ч с последующим выходом в межзвездное пространство.

Миссии Helios 2, которая началась в 1976 году и должна была исследовать межпланетную среду между 0,3 а. е. и 1 а. е. от Солнца, принадлежит рекорд самой высокой скорости, развитой с помощью гравитационного маневра. На тот момент Helios 1 (запущенному в 1974 году) и Helios 2 принадлежал рекорд самого близкого подхода к Солнцу. Helios 2 был запущен обычной ракетой и выведен на сильно вытянутую орбиту.

Из-за большого эксцентриситета (0,54) 190-дневной солнечной орбиты, в перигелии Helios 2 удалось достичь максимальной скорости свыше 240 000 км/ч. Эта орбитальная скорость была развита за счет только лишь гравитационного притяжения Солнца. Технически скорость перигелия Helios 2 не была результатом гравитационного маневра, а максимальной орбитальной скоростью, но аппарат все равно удерживает рекорд самого быстрого искусственного объекта.

Если бы «Вояджер-1» двигался в направлении красного карлика Проксимы Центавра с постоянной скорость в 60 000 км/ч, ему потребовалось бы 76 000 лет (или более 2500 поколений), чтобы преодолеть это расстояние. Но если бы зонд развил рекордную скорость Helios 2 - постоянную скорость в 240 000 км/ч - ему потребовалось бы 19 000 лет (или более 600 поколений), чтобы преодолеть 4,243 световых года. Существенно лучше, хотя и близко не практично.

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий - это радиочастотный двигатель с резонансной полостью, известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу.

Если традиционные электромагнитные двигатели предназначены для приведения в движение определенной массы (вроде ионизированных частиц), конкретно эта двигательная система не зависит от реакции массы и не испускает направленного излучения. Вообще, этот двигатель встретили с изрядной долей скепсиса во многом потому, что он нарушает закон сохранения импульса, согласно которому импульс системы остается постоянным и его нельзя создать или уничтожить, а только изменить под действием силы.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.

В апреле 2015 года ученые NASA Eagleworks (часть Космического центра им. Джонсона) заявили, что успешно испытали этот двигатель в вакууме, что может указывать на возможное применение в космосе. В июле того же года группа ученых из отделения космических систем Дрезденского технологического университета разработала собственную версию двигателя и наблюдала ощутимую тягу.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/киловатт), космический аппарат на электромагнитном двигателе может осуществить поездку к менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Ядерное тепловое и ядерное электрическое движение

Еще одна возможность осуществить межзвездный перелет - использовать космический аппарат, оснащенный ядерными двигателями. NASA десятилетиями изучало такие варианты. В ракете на ядерном тепловом движении можно было бы использовать урановые или дейтериевые реакторы, чтобы нагревать водород в реакторе, превращая его в ионизированный газ (плазму водорода), который затем будет направляться в сопло ракеты, генерируя тягу.

Ракета с ядерным электрическим приводом включает тот же реактор, преобразующий тепло и энергию в электроэнергию, которая затем питает электродвигатель. В обоих случаях ракета будет полагаться на ядерный синтез или ядерное деление для создания тяги, а не на химическое топливо, на котором работают все современные космические агентства.

По сравнению с химическими двигателями, у ядерных есть неоспоримые преимущества. Во-первых, это практически неограниченная энергетическая плотность по сравнению с ракетным топливом. Кроме того, ядерный двигатель также будет вырабатывать мощную тягу по сравнению с используемым объемом топлива. Это позволит сократить объемы необходимого топлива, а вместе с тем вес и стоимость конкретного аппарата.

Хотя двигатели на тепловой ядерной энергии пока в космос не выходили, их прототипы создавались и испытывались, а предлагалось их еще больше.

И все же, несмотря на преимущества в экономии топлива и удельном импульсе, самая лучшая из предложенных концепций ядерного теплового двигателя имеет максимальный удельный импульс в 5000 секунд (50 кН·c/кг). Используя ядерные двигатели, работающие на ядерном делении или синтезе, ученые NASA могли бы доставить космический аппарат на всего за 90 дней, если Красная планета будет в 55 000 000 километрах от Земли.

Но если говорить о путешествии к Проксиме Центавра, ядерной ракете потребуются столетия, чтобы разогнаться до существенной доли скорости света. Потом потребуются несколько десятилетий пути, а за ними еще много веков торможения на пути к цели. Мы все еще в 1000 годах от пункта назначения. Что хорошо для межпланетных миссий, не так хорошо для межзвездных.