Биосинтез целлюлозы. Синтез сахарозы и полисахаридов Текст научной работы на тему «Биосинтез бактериальной целлюлозы культурой Мedusomyces gisevii»

Клеточная стенка образуется в результате развития срединной пластинки. Сразу после полного разделения ядра растительной клетки в телофазе митоза поперек делящейся клетки образуется фрагмопласт. Он состоит из множества уплощенных мембранных везикул - фрагмосом, содержащих компоненты кле­точной стенки. В их построении участвует цитоскелет. Все полисахариды кле­точной стенки, за исключением целлюлозы, синтезируются в аппарате Гольд-жи. Они упаковываются в везикулы, которые транспортируются к растущей

срединной пластинке и сливаются с ней. Срединная пластинка увеличивается по направлению к плазмалемме и соединяется с ней, разделяя две дочерние клетки. Наконец, вновь образующаяся клеточная стенка соединяется с уже существующей первичной клеточной стенкой.

Практически все «нецеллюлозные» компоненты клеточной стенки - поли­сахариды, структурные белки, широкий спектр ферментов - образуются в аппарате Гольджи и в его везикулах координированно направляются к клеточной стенке.

До сих пор не идентифицированы гены, кодирующие полисахаридсинтазы, участвующие в синтезе основных цепей «нецеллюлозных» полимеров. Иденти­фицированы гены нескольких фукозил- и галактозилтрансфераз, которые при­соединяют отдельные сахара к главной цепочке.

Единственными полимерами, которые синтезируются с внешней стороны плазмалеммы, являются целлюлоза и каллоза. Целесообразность этого становится очевидной, если принять во внимание большую длину образующихся микрофибрилл целлюлозы и необходимость их филигранной укладки в кле­точную стенку. Каллоза отличается от целлюлозы наличием β 1 → 3-D-глюкано-вых цепочек, которые могут образовывать спиральные дуплексы и триплексы. Каллоза образуется в нескольких типах клеток на определенных стадиях фор­мирования клеточной стенки, например в прорастающей пыльцевой трубке или срединной пластинке делящихся клеток. Каллоза может также синтезиро­ваться при стресс-реакциях или в ответе на грибную инфекцию.

Синтез целлюлозы катализируется мультимерными комплексами фермен­тов, расположенными на концах удлиняющихся микрофибрилл целлюлозы. Эти терминальные комплексы хорошо различимы под электронным микроскопом.

Рис. 1.30. Схема строения и работы целлюлозосинтазы

В некоторых морских водорослях терминальные комплексы синтеза целлюлозы расположены линейно; у всех покрытосеменных растений они фор­мируют розеточные структуры. Терминальные комплексы появляются в мемб­ране плазмалеммы в момент активации синтеза целлюлозы.

Исходным субстратом для целлюлозосинтазы является УДФ-глюкоза. Она образуется с помощью фермента сахарозосинтазы непосредственно из сахаро­зы. Ряд изоформ этого фермента находятся в плазматической мембране. Они ассоциированы с целлюлозосинтазой и могут поставлять УДФ-глюкозу непо­средственно к ее каталитическому центру (рис. 1.30).

Относительно недавно были идентифицированы несколько растительных генов, кодирующих ферменты синтеза целлюлозы, в частности гены CesA, которые интенсивно экспрессируются в хлопковых волокнах во время актив­ного синтеза целлюлозы вторичной клеточной стенки. Кодируемые этими ге­нами полипептиды имеют восемь трансмембранных доменов и массу около 110 кДа. Открытие генов CesA дало возможность идентифицировать ряд других генов, кодирующих синтазы полисахаридов клеточной стенки.


В растениях в процессе фотосинтеза образуются не только фосфорные эфиры сахаров или простые сахара, но и более сложные формы углеводов - сахароза, крахмал, клетчатка. Распад сложных форм углеводов до простых протекает тоже очень быстро. Это наблюдается, например, при прорастании семян, старении вегетативных органов и др. Образующиеся при распаде простые сахара или их фосфорные эфиры оттекают в репродуктивные органы, где из них вновь синтезируются сложные углеводы. И, наконец, в растениях очень легко идут процессы взаимных превращений углеводов.

Взаимопревращение моносахаридов проходит через фосфорные эфиры сахаров или их уридиндифосфатпроизводные (УДФ-производные). УДФ-производные сахаров представляют собой тот или иной сахар, соединенный через два остатка фосфорной кислоты с уридином, например:

Рис.1. Уридиндифосфатглюкоза

Синтез сахарозы

Сахароза является наиболее важным из образующихся в растениях лигосахаридов, в форме которого связанный углерод и энергия транспортируются по всему растению. Она состоит из α-D-глюкозного остатка в его пиранозной форме, связанного гликозидной связью с β-D-фруктозой в фуранозной форме. Поскольку аномерный углеродный атом обоих моносахаридов участвует в образовании гликозидной связи, их полуацетальные группы заблокированы и ни одно из колец не может открыться. Таким образом, сахароза – это невосстанавливающий сахар (не восстанавливает реактивы Фелинга и Бенедикта), и за исключением ее чрезвычайной чувствительности к кислотному гидролизу, она химически инертна. При нагревании с кислотами, или под действием сахаразы (инвертазы) сахароза гидролизуется, образуя инвертный сахар – смесь глюкозы и фруктозы. Сахароза хорошо растворима в воде и обладает сладким вкусом.

Сахароза используется как продукт питания, а также в производстве поверхностно-активных веществ (эфиры сахарозы с высшими кислотами). Основным источником получения сахарозы является сахарная свекла, содержащая до 23 % сахарозы, и сахарный тростник, стеб-ли которого содержат 10–18 % сахарозы. В настоящее время установлено, что сахароза синтезируется не только в хлоропластах, но и в цитоплазме фотосинтезирую-щих клеток из УДФ-глюкозы и фруктозо-6-фосфата, возникшего из
дигидроксиацетонфосфата. Это вещество образуется при фотосинтезе в хлоропластах и затем поступает в цитоплазму. В нефотосинтезирующих тканях (например, в эндосперме прорастающих бобов клещевины) образование сахарозы из УДФ-глюкозы и фруктозо-6-фосфата также происходит в цитоплазме клеток.

Сахароза (тростниковый, свекловичный сахар) – самый распространенный в природе дисахарид. В растениях он образуется из глюкозы и фруктозы. На первом этапе идет фосфорилирование глюкозы:

Глюкоза + АТФ → глюкоза-6-фосфат + АДФ,

затем глюкозо-6-фосфат изолируется в глюкозо-1-фосфат. Глюкозо-1-фосфат соединяется с УТФ, в результате чего отщепляется пирофосфатная кислота и образуется соединение глюкозы с уридиндифосфорной кислотой (УДФ) - уридиндифосфатглюкоза.

Одновременно идет фосфорилирование фруктозы под действием фермента фруктокиназы с участием АТФ:

фруктоза + АТФ → фруктозо-6-фосфат + АДФ.

После этого происходит взаимодействие УДФ-глюкозы с фруктозо-6-фосфатом с участием фермента сахарозофосфат-УДФ-глюкозилтрансферазы. Наконец, образовавшийся сахарозо-6-фосфат под действием фермента фосфатазы гидролизуется с образованием свободной сахарозы. Таким образом, для биосинтеза одной молекулы сахарозы необходимы 3 макроэргические фосфатные связи, эта реакция необратима. В нефотосинтезирующих тканях некоторых растений, например, в корнеплодах сахарной свеклы, клубнях картофеля и других сахароза может образоваться из свободной фруктозы:

УДФ-глюкоза + фруктоза сахароза + УДФ.

Реакция катализируется ферментом сахарозо-УДФ-глюкозилтрансферазой и в зависимости от условий может быть направлена как в сторону синтеза, так и в сторону расщепления сахарозы.

Синтез крахмала

Крахмал – запасной полисахарид растений, причем он может храниться в растении долго, или расходоваться достаточно быстро. На длительное время он запасается во многих семенах, клубнях и корневищах и используется только тогда, когда эти органы прорастают. На короткое время крахмал образуется в хлоропластах в период быстрого фотосинтеза, а в последующий темновой период он расходуется и оттекает из листьев в форме сахарозы. Крахмал всегда образуется и запасается в виде крахмальных зерен, находящихся в пластидах – хлоропластах либо амилопластах. Крахмальные зерна – это высокоорганизованные структуры, форма и размер которых очень разнообразны, но часто характерны для данного вида растения. Форма зерен может быть сферической, яйцевидной, чечевицеобразной или неправильной; размер может колебаться 1 до 100 мкм. Наиболее крупные крахмальные зерна у картофеля, а самые мелкие у риса и гречихи. Крахмальные зерна содержат до 20 % воды (из которых 10 % химически связано с крахмалом) и ряда концентрических слоев крахмала. Крахмальные зерна образуются путем наслаивания вновь образованных слоев на ранее существующие.

Содержание минеральных веществ в крахмале очень невелико – 0,2–0,7 %, они представлены в основном фосфорной кислотой. В крахмале найдены некоторые высокомолекулярные жирные кислоты (пальмитиновая, стеариновая и др.), содержание которых достигает 0,6 %. Крахмал представляет собой смесь двух полисахаридов – амилозы и амилопектина. Молекулы амилозы – это длинные неразветвленные цепи, содержащие от 100 до нескольких тысяч глюкопиранозных остатков, соединенных гликозидными связями. Изучение дифракции рентгеновских лучей показало, что молекулы амилозы имеют спиралевидную структуру диаметром 1,3 нм с шестью последовательными глюкозными остатками на один оборот спирали.

Молекулы амилозы растворимы в горячей воде, но образующийся раствор нестоек и затем происходит спонтанное осаждение амилозы, известное как ретроградация. Это происходит вследствие тенденции длинных и тонких амилозных молекул выстраиваться в линию рядом друг с другом и образовывать нерастворимые агрегаты с помощью водородных связей. Донором глюкозных остатков при биосинтезе амилозы может служить уридиндифосфатглюкоза-(УДФК). Для ее образования в реакционной среде необходимо наличие затравки, в качестве которой могут служить полисахариды, построенные всего лишь из 3-4 остатков глюкозы, соединенных α(1-4)-связями.

Остатки глюкозы переносятся на акцептор (затравку), где и происходит удлинение цепи. Реакция идет по схеме:

УДФГ + акцептор (Г)к -- УДФ + акцептор (Г)к + 1,

где Г - остатки глюкозы.

Фермент, катализирующий эту реакцию, называется УДФГ-крахмалглюкозилтрансферазой.

У большинства растений активным донором глюкозы является не УДФ-глюкоза, а аденозиндифосфатглкжозα(АДФГ). Реакция присоединения глюкозных остатков от АДФГ к низкомолекулярному акцептору идет аналогичным путем и катализируется ферментом АДФГ-крахмал-глюкозилтрансферазой. Синтез разветвленной молекулы амилопектина, имеющей α (1-6)-связи, происходит при помощи фермента α-глюкантрансферазы (Q-фермент). В синтезе крахмала участвуют и Д-фермент или глюкозилтрансфераза, образующий α(1-4)-связи и участвующий в образовании затравки.

Распад крахмала происходит при участии двух процессов - гидролиза и фосфоролиза.Гидролитический распад крахмала осуществляется под действием четырех ферментов класса гидролиз α-амилаза, катализирует расщепление α(1-4)-связи, причем связи разрываются беспорядочно. Конечный продукт такого распада - мальтоза, глюкоза, декстрины. Под действием β-амилазы происходит расщепление α (1-4)-связей с образованием остатков мальтозы. Фермент глюкоамилазы катализирует последовательное отщепление остатков глюкозы от молекулы крахмала. Амилопектин-1,6-глюкозидаза или R-фермент катализирует расщепление α(1-6)-связей в молекуле амилопектина, т. е. действует на точки ветвления.

Фосфоролиз - это присоединение фосфорной кислоты по месту разрыва глюкозидной связи между остатками моносахаридов в цепи полисахарида, при этом происходит образование глюкозо-1-фосфата. Эта реакция катализируется ферментомаглюконфосфорилазой, относящимся к классу трансфераз. Крахмал в растении может подвергаться очень быстрому распаду, так как ферменты распада находятся во всех органах растения.

Синтез целлюлозы

Целлюлоза не растворима в воде, она лишь набухает в ней. При кислотном гидролизе (кипячение в серной кислоте) превращается в глюкозу, при более слабом – в целлобиозу. С помощью рентгеноструктурного анализа установлено, что молекула целлюлозы имеет нитевидную форму. Эти нитевидные молекулы, благодаря водородным связям, соединяются пучками по 40–60 штук в мицеллу. В клеточных стенках растений мицеллы целлюлозы связаны во-дородными связями с различными гетерополисахаридами. Например, у белого клена ими являются соединенные между собой гликозидными связями ксилоглюкан, арабиногалактан, рамногалактурон. Кроме того, имеются данные о том, что в построении клеточной стенки растений принимает участие особый, богатый оксипролином гликопротеид экстензин.

Целлюлоза построена из остатков β-глюкозы. В биосинтезе целлюлозы принимает участие не свободная глюкоза, а ее ГДФ-производное - гуанозиндифосфатглюкоза при участии фермента целлюлозосинтетазы по схеме:

ГДФ - глюкоза + (глюкоза) к→ ГДФ + (глюкоза) к + 1

Распад целлюлозы идет преимущественно гидролитическим путем под действием фермента целлюлазы до дисахарида целлобиозы.

Транспорт углеводов осуществляется в виде сахарозы. В процессе фотосинтеза образуется много углеводов, и в этой связи большое значение имеет отток ассимилятов в другие части клетки из хлоропластов. Проникновение через мембрану хлоропластов фосфорилированных гексоз и сахарозы затруднено, наиболее легко через мембраны хлоропластов проникают триозофосфаты (ФГА и ФДА). Предполагается, что образующиеся сложные углеводы распадаются на триозофосфаты и в таком виде передвигаются в цитоплазму, где могут служить материалом для ресинтеза гексоз, сахарозы, крахмала.

Межклеточный паренхимный транспорт осуществляется двумя путями - по плазмодесмам (симпласту) или по свободному пространству (аппопласту). Сахароза, образовавшаяся в клетках мезофилла листа, десорбируется в аппопласт. Выходя из паренхимных клеток в аппопласт, сахароза расщепляется инвертазой на гексозы. Гексозы передвигаются по аппопласту к передаточным клеткам проводящих пучков по градиенту концентраций. При соприкосновении с передаточными клетками флоэмы они снова превращаются в сахарозу. Далее происходит загрузка ситовидных трубок, сахароза поступает против градиента концентраций, и требуется расход энергии (АТФ).

Предполагается, что сахароза преодолевает мембрану с помощью переносчика в комплексе с протоном. При этом благодаря работе Н + -АТФ-азы ионы Н + выкачиваются из клеток флоэмы, а затем поступают обратно по градиенту рН, увлекая за собой сахарозу против градиента ее концентрации. Основной транспортной формой углеводов по флоэме служит сахароза (С 12 Н 22 О 11). У некоторых видов наряду с сахарозой транспортной формой углеводов служат олигосахара (рафиноза, стахиоза), а также некоторые спирты.



В цикле Кальвина - Бенсона образуется, как уже отмечалось выше, фруктозо-6-фосфат (F-6-P). Этот гексозофосфат может под действием специфических ферментов превращаться в другие фосфорилированные гексозы, а именно в глюкозо-6-фосфат (G-6-P) и глюкозо-1-фосфат (G-1-P). Легко происходит и обратное превращение.

Из этих трех гексозофосфатов строятся затем цепи углеводных молекул, используемых для транспорта, хранения и в реакциях синтеза. Чтобы такие превращения могли произойти, гексозофосфаты предварительно должны быть активированы. Это обычно достигается в результате их присоединения к нуклеотидам - сложным кольцевым структурам, сходным с адениловой кислотой АТР. Продуктом такой реакции присоединения оказываются нуклеотидные производные моносахаридов, или нуклеотидсахара. Чаще других встречаются уридиндифосфоглюкоза (UDPG), образующаяся в реакции между уридинтрифосфатом (UTP) и глюкозо-1-фосфатом (G-1-P). Сам UTP образуется непрямым путем, в результате переноса фосфатной группы от АТР к UDP (уридиндифосфату).


Нуклеотиды АТР и UTP присутствуют во всех клетках, потому что они используются наряду с другими нуклеотидами в синтезе ДНК и РНК.

Сахара транспортируются по растению в виде сахарозы - дисахарида, состоящего из остатков глюкозы и фруктозы (рис. 5.2). Сахароза образуется в реакции между UDPG и F-6-P:


Равновесие этой реакции сильно сдвинуто в сторону синтеза сахарозы, чем обеспечивается возможность накопления данного дисахарида в значительных концентрациях. Для последующего использования сахароза должна предварительно подвергнуться расщеплению: фермент инвертаза катализирует ее гидролиз с образованием свободной глюкозы и фруктозы.


Энергия гликозидной связи в такой реакции растрачивается впустую, распределяясь между двумя молекулами. Поэтому если глюкозе и фруктозе предстоит распад в процессе дыхания или участие (в качестве сырья) в синтезе полисахаридов, то они должны предварительно вновь подвергнуться фосфорилирова- нию за счет АТР. Процессы синтеза и распада сахарозы наглядно показывают, что часто анаболические и катаболические реакции (реакции синтеза и распада) идут по разным путям.

Синтез крахмала и целлюлозы

Длинные полимерные цепи крахмала и целлюлозы построены из одних и тех же элементарных звеньев - остатков глюкозы, только соединенных по-разному. Это структурное различие обусловливает то, что два рассматриваемых полимера глюкозы (глюканы) существенно различаются по своей природе; крахмал, например, легко переваривается в организме человека" а целлюлоза совсем не переваривается. Главное же их различие состоит в том, что 1-й и 4-й углеродные атомы двух соседних остатков глюкозы соединены у крахмала α-связями, а у целлюлозы (β-связями (рис. 5.3). Крахмал представлен двумя формами: линейным полимером, или амилозой, не содержащим никаких других связей, кроме α-1,4-гликозидных, и разветвленным полимером, или амилопектином, в котором наряду с α-1,4-гликозидными связями имеются и 1,6-связи. Различие в характере связей определяет и неодинаковое пространственное расположение полимерных цепей. Крахмал - главный запасной полисахарид растения. Он нерастворим в воде и отлагается слой за слоем в крахмальных зернах, содержащихся в хлоропластах (см. рис. 2.20) или в лишенных хлорофилла лейкопластах запасающих тканей стебля, корней и семян. Иногда клетки запасающей ткани оказываются буквально забиты крахмальными зернами, которые легко в них выявить, поскольку они способны окрашиваться иодом в синий цвет. Будучи нерастворим в воде, крахмал в отличие от сахарозы и от гексоз не вызывает в клетках осмотического эффекта (см. гл. 6). Поэтому образование крахмала в клетках листа в периоды интенсивного фотосинтеза предотвращает подавление последнего, происходящее в результате накопления продуктов фотосинтеза. В темноте крахмал постепенно снова гидролизуется с образованием глюкозофосфата, который затем превращается в сахарозу, транспортируемую в другие части растения.


Рис. 5.3. Структура крахмала (А) и целлюлозы (Б) (С изменениями по J. Bonner, A. W. Galston. 1952. Principles of Plant Physiology, San Francisco, W. H. Freeman and Co.) Обратите внимание, что химические формулы крахмала и целлюлозы одинаковы, различаются же эти полисахариды пространственной ориентацией их кислородных мостиков. А. Крахмал, главный запасной полисахарид растения, построен из двух хорошо различимых компонентов: амилозы с ее длинными неразветвленными цепями из глюкозных звеньев и амилопектина, состоящего из большого числа коротких разветвленных цепей. Б. Целлюлоза, главный компонент первичной клеточной стенки, существует в виде длинных полимерных цепей. Цепи объединяются в мицеллярные тяжи, а последние - в микрофибриллы. Микрофибриллы, достаточно крупные для того, чтобы их можно было рассмотреть при помощи электронного микроскопа, составляют "основу" и "уток" клеточной стенки

Исходным продуктом для синтеза крахмала служит аденозиндифосфоглюкоза (ADPG), образующаяся из АТР и G-1-P:


Молекула крахмала строится путем постепенного добавления одного глюкозного остатка за другим в реакции ADPG с предобразованной глюкозной цепью:

При низком содержании сахарозы крахмал расщепляется и. переводится в сахарозу. Однако сначала он расщепляется до остатков глюкозы и к каждому из них присоединяется остаток фосфорной кислоты, т. е. образуется G-1-P, чем обеспечивается сохранение энергии связи:

Этот G-1-P может затем использоваться для синтеза сахарозы, который мы описали выше. В семенах и в некоторых других органах, в которых одновременно идет расщепление больших количеств крахмала, он распадается до дисахарида мальтозы (G-G) под действием аα-амилазы. Мальтоза затем распадается до глюкозы, из которой (для транспорта) вновь синтезируется сахароза. На этом втором пути в отличие от первого энергия связи не сохраняется, поэтому здесь для превращения глюкозы в глюкозо-6-P требуется АТР.


Целлюлоза, самый распространенный на Земле углевод, служит главным компонентом первичной клеточной стенки. Молекулы ее строятся подобно тому, как строятся молекулы крахмала, с тем, оцнако, отличием, что роль донора глюкозы играет другое нуклеотидное производное моносахарида - гуанозин- дифосфоглюкоза (GDPG) - и что связь между мономерными.звеньями принадлежит не к α-, а к β-типу.


В некоторых случаях донором глюкозы для синтеза целлюлозы может быть и UDPG.

В организме высших растений целлюлоза расщепляется редко (если не считать распада, обусловленного деятельностью микробов). Два известных исключения из этого правила касаются клеток в отделительной зоне листа, образующейся перед сбрасыванием листьев, и сосудов ксилемы, у которых поперечные стенки растворяются. В отделительной зоне листа фермент целлюлаза разрушает клеточные стенки, расщепляя содержащуюся в них целлюлозу до отдельных мономерных единиц, т. е. до глюкозы. Клеточные стенки, ослабленные этим процессом, в конце концов разрываются, и лист сбрасывается.

Целлюлозные микрофибриллы в клеточной стенке скреплены при помощи матрикса из смешанных полисахаридных цепей, главным образом ксилоглюканов и арабиногалактанов (см. рис. 2.31). (Ксилоза и арабиноза - пятиуглеродные сахара (пентозы), а галактоза - гексоза, родственная глюкозе.) Эти полисахариды синтезируются также из предшественников, нуклео- тидсахаров, преимущественно в диктиосомах. Отшнуровывающиеся от диктиосом пузырьки в конце концов сливаются с плазмалеммой и таким путем передают свое содержимое формирующейся клеточной стенке.

Итак, все полисахариды легко переходят один в другой, но синтез их всегда идет через стадию нуклеотидсахаров, тогда как распад совершается более прямым путем.

В большинстве продуктов растительного происхождения содержатся так называемые балластные вещества, не перевариваемые в желудочно-кишечном тракте,- клетчатка и пектин. Однако они необходимы человеку. Если пища бедна ими, возникают атония кишечника и запоры. Таким образом, клетчатка является регулятором двигательной функции кишечника.

Клетчатка улучшает работу кишечника, замедляет гнилостные процессы и газообразование, уменьшает всасывание некоторых вредных веществ. Так, например, для профилактики профессиональных заболеваний у работающих с солями металлов и с радиоактивными веществами рекомендуется употреблять в пищу красную смородину , которая содержит много пектинов.

Полисахарид: Клетчатка

Клетчатка (целлюлоза) - полисахарид, составляющий главную массу клеточных стенок растений. Клетчатка нерастворима в воде, она лишь набухает в ней. Клетчатка составляет более 50% древесины. В волокнах хлопка она составляет более 90%. При кипячении с крепкой серной кислотой клетчатка нацело превращается в глюкозу. При более слабом гидролизе из клетчатки получается целлобиоза.

В молекуле клетчатки остатки целлобиозы связаны гликозидными связями в виде длинной цепочки. Молекулярная масса клетчатки точно не установлена. Полагают, что клетчатка не является индивидуальным веществом, а представляет собой смесь гомологичных веществ. Молекулярные массы клетчатки, полученной из различных источников, весьма сильно колеблются: хлопок - 330 000 (в цепочке 2020 гликозидных остатков); рами - 430 000 (2660 остатков), еловая древесина - 220 000 (1360 остатков). С помощью рентгеноструктурного анализа установлено, что молекулы клетчатки имеют нитевидную форму. Эти нитевидные молекулы соединяются в пучки - мицеллы. Каждая мицелла состоит приблизительно из 40-60 молекул клетчатки.

Соединение отдельных молекул клетчатки в мицеллы происходит благодаря водородным связям, которые осуществляются как за счет водородных атомов гидроксильных групп клетчатки, так и за счет адсорбированных клетчаткой молекул воды. В клеточных стенках растений мицеллы клетчатки связаны водородными связями с различными гетерополисахаридами. Например, у белого клена ими являются соединенные между собой гликозидными связями ксилоглюкан, состоящий из остатков глюкозы, ксилозы, галактозы и фукозы; арабиногалактан, построенный из остатков арабинозы и галактозы; рамногалактуронан, образованный остатками галактуроновой кислоты и рамнозы. Кроме того, имеются данные о том, что в построении клеточной стенки растений, особенно на ранних этапах ее образования, принимает участие также особый, богатый оксипролином гликопротеид экстензин. При одревеснении клеточных стенок в них накапливается также лигнин.

Клетчатка не переваривается в желудочно-кишечном тракте человека. Она, переваривается лишь жвачными животными, в желудке которых имеются особые бактерии, гидролизующие клетчатку с помощью выделяемого ими фермента целллюлазы.

Гемицеллюлозы (полуклетчатки). Под этим названием объединяют большую группу высокомолекулярных полисахаридов, не растворяющихся в воде, но растворимых в щелочных растворах. Гемицеллюлозы содержатся в значительном количестве в одревесневших частях растений: соломе, семенах, орехах, древесине, кукурузных початках. Большое количество гемицеллюлоз содержится в отрубях. Гемицеллюлозы гидролизуются кислотами легче, чем клетчатка. При этом они образуют маннозу, галактозу, арабинозу или ксилозу и поэтому соответственно носят названия - маннаны, галактаны и пентозаны (арабан или ксилан).

1

Изучен процесс биосинтеза бактериальной целлюлозы (БЦ) на ферментативном гидролизате лигноцеллюлозного материала мискантуса. Лигноцеллюлозный материал получен обработкой мискантуса разбавленным раствором азотной кислоты на опытном производстве. Ферментативный гидролиз осуществлён в ферментере объёмом 11 л. Биосинтез БЦ проведён с помощью симбиотической культуры Мedusomyces gisevii Sa-12. Установлено, что численность уксуснокислых бактерий в процессе культивирования в 1,2 раза меньше, чем дрожжей. Основная утилизация субстрата происходит за 6 суток культивирования, константа утилизации субстрата составляет 0,234 сут-1. Показано, что ферментативный гидролизат лигноцеллюлозного материала мискантуса не является доброкачественной питательной средой для биосинтеза БЦ, выход БЦ составил 5,6 %, что в 1,6 раз меньше, чем выход на синтетической питательной среде. Установлено, что бактериальная целлюлоза, полученная на данной среде, является химически чистой.

бактериальная целлюлоза

Мedusomyces gisevii

инфракрасная спектроскопия

ферментативный гидролизат

мискантус

1. Бактериальная целлюлоза, синтезируемая Gluconacetobacter hansenii, для использования в медицине / Т.И. Громовых и [др.] // Прикладная биохимия и микробиология. – 2017. – Т. 53, № 1. – С. 69–75.

2. Перспективы применения бактериальной целлюлозы в мясопродуктах / Т.И. Громовых и [др.] // Мясная Индустрия. – 2013. – № 4. – C. 32–35.

3. Octave S. Biorefinery: toward an industrial metabolism / S. Octave, D. Thomas // Biochimie. – 2009. – № 91. – P. 659–664.

4. Gismatulina Y.A., Budaeva V.V., Sakovich G.V., Veprev S.G., Shumny V.K. Cellulose from various parts of soranovskii miscanthus // Russian Journal of Genetics: Applied Research. – 2015. – Vol. 5, № 1. – Р. 60–68.

5. Гисматулина Ю.А. Сравнение физико-химических свойств целлюлоз, полученных комбинированным способом из листа и стебля мискантуса / Ю.А. Гисматулина / Вестник алтайской науки. – 2014. – № 1 (19). – С. 302–307.

6. Макарова Е.И. Биоконверсия непищевого целлюлозосодержащего сырья: энергетических растений и отходов АПК: дис. … канд. технич. наук. – Щелково, 2015. – 161 с.

7. Гладышева Е.К. Особенности структурных характеристик бактериальной целлюлозы, синтезированной на ферментативном гидролизате лигноцеллюлозного материала плодовых оболочек овса / Е.К. Гладышева, Е.А. Скиба, Л.А. Алешина // Ползуновский вестник. – 2016. – № 4–1. – С. 152–156.

8. Skiba E.A., Budaeva V.V., Baibakova O.V., Udoratina E.V., Shakhmatov E.G., Shcherbakova T.P., Kuchin A.V., Sakovich G.V. Enzymatic Hydrolysis of Lignocellulosic Materials in Aqueous Media and the Subsequent Microbiological Synthesis of Bioethanol // Catalysis in Industry. – 2016. – Vol. 8, № 2. – Р. 168–175.

9. Cкиба Е.А. Методика определения биологической доброкачественности гидролизатов из целлюлозосодержащего сырья с помощью штамма Saccharomyces cerevisiae ВКПМ Y-1693 / Е.А. Cкиба // Известия вузов. Прикладная химия и биотехнология. – 2016. – № 1 (16). – С. 34–44.

10. Гладышева Е.К. Биосинтез бактериальной целлюлозы культурой Мedusomyces gisevii / Е.К. Гладышева, Е.А. Скиба // Вестник Воронежского государственного университета инженерных технологий. – 2015. – № 3. – С. 149–156.

11. Гладышева Е.К. Исследование влияния температуры на синтез бактериальной целлюлозы продуцентом Мedusomyces gisevii / Е.К. Гладышева // Современные наукоемкие технологии. – 2016. – № 8–1. – С. 36–40.

12. Юркевич Д.И. Медузомицет (Чайный гриб): научная история, состав, особенности физиологии и метаболизма / Д.И. Юркевич, В.П. Кутышенко // Биофизика. – 2002. – № 6. – С. 1116–1129.

13. Yang, X.-Y., Huang C., Guo H.-J., Xiong L., Li Y.-Y., Zhang H.-R., Chen X.-D. Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus // Journal of Applied Microbiology. – 2013. – № 115. – Р. 995–1002.

14. Яровенко В.Л. Технология спирта / В.Л. Яровенко, В.А. Маринченко, В.А. Смирнов. – М.: Колос, 1999. – 464 с.

15. Новый справочник химика и технолога. Сырье и продукты промышленности органических и неорганических веществ. Ч. ΙΙ. – СПб.: НПО «Профессионал», 2006. – 1142 с.

Масштабирование процесса и реализация на практике биотехнологического производства зависит от таких факторов, как наличие воспроизводимого массового дешевого сырья; простота трансформации сырья в питательную среду; возможность аппаратурного оформления производства стандартным либо новым эффективным оборудованием; высокий выход целевого продукта и обеспечение стандартности его качества. Ввиду перспективности использования БЦ в различных областях необходимо создание ее промышленного производства, при этом важной задачей является поиск подходящих источников углерода, имеющих низкую стоимость и не конкурирующих с пищевой продукцией. Актуальным направлением получения БЦ является использование целлюлозосодержащего сырья для получения из него альтернативных питательных сред.

Массовое использование ископаемых ресурсов в течение прошлого столетия и связанная с этим проблема загрязнения вызвали значительное число экологических и экономических проблем. Предположительно, эти ресурсы будут исчерпаны в ближайшем будущем. Данные причины способствуют прогрессивному переходу к экономике на основе возобновляемых материалов (биомассы) в качестве сырья для производства химических веществ, материалов, топлива и энергии в пределах так называемой концепции биоконверсии. Целлюлоза является одним из наиболее распространенных полисахаридов и рассматривается как неисчерпаемый и универсальный источник. Перспективным является использование так называемых энергетических, т.е. быстрорастущих растений: мискантуса, проса, сорго и т.д. . Мискантус - род многолетних травянистых растений семейства мятликовых. Представляет растение высотой до 200 см, стебли прямостоячие, листья простые пластинчатой формы, верхушка острая, основание клиновидное, соцветия в виде метелок. Растение является многолетним злаком и начиная с третьего года культивирования может ежегодно продуцировать на одном поле на протяжении 15-20 лет 10-15 т/га/год сухой биомассы, что соответствует 4-6 т/га чистой целлюлозы .

В ИПХЭТ СО РАН разработана технология получения ферментативных гидролизатов из мискантуса. Предварительно мискантус подвергают химической обработке разбавленными растворами кислоты и/или щелочи , а затем ферментативному гидролизу . Исследование процесса биосинтеза БЦ на ферментативном гидролизате лигноцеллюлозного материала плодовых оболочек овса показало, что для успешного микробиологического синтеза ферментативный гидролизат должен обладать биологической доброкачественностью.

В данной работе в качестве субстрата для ферментативного гидролиза выбран лигноцеллюлозный материал (ЛЦМ) мискантуса. ЛЦМ мискантуса получают обработкой сырья в одну стадию разбавленным раствором азотной кислоты при атмосферном давлении в стандартном оборудовании. Показано, что ферментативный гидролизат, полученный из ЛЦМ мискантуса, является биологически доброкачественным для биосинтеза этанола и не нуждается в дополнительной технологической обработке для освобождения его от вредных примесей .

Целью данной работы являлось изучение процесса биосинтеза БЦ на ферментативном гидролизате ЛЦМ мискантуса и исследование структуры полученных образцов методом инфракрасной спектроскопии. Следует отметить, что данная задача неоднозначна, поскольку продуценты БЦ более требовательны к составу питательных сред, следовательно, данные по доброкачественности среды для дрожжей не могут быть экстраполированы на целлюлозосинтезирующие микроорганизмы .

Материалы и методы исследования

ЛЦМ мискантуса был получен обработкой разбавленным раствором азотной кислоты на опытном производстве ИПХЭТ СО РАН и имел следующий состав (%, в пересчете на а.с.в.): массовая доля кислотонерастворимого лигнина - 10,6, массовая доля золы - 4,8, массовая доля целлюлозы по Кюршнеру - 86,7, массовая доля пентозанов - 7,9.

Ферментативный гидролиз ЛЦМ мискантуса проводился в ферментере объёмом 11 л в водной среде при 47 ± 2 °С в течение 72 ч с помощью ферментных препаратов Целлолюкс-А (0,04 г/г субстрата) и Брюзайм BGX (0,1 мл/г субстрата), активная кислотность поддерживалась на уровне 4,7 ± 0,2 с помощью гидроксида аммония и ортофосфорной кислоты, начальная концентрация субстрата составила 60 г/л, более подробно методика описана в работе .

Полученный ферментативный гидролизат отфильтровывался от остатков субстрата под вакуумом. Гидролизат представлял собой прозрачную жидкость рыжего цвета с кислым запахом, активная кислотность 4,7 ед. рН. Общее количество редуцирующих веществ (РВ) составило 49,0 г/л, из них ксилозы - 2,8 г/л. В отфильтрованный ферментативный гидролизат ЛЦМ из мискантуса вносился охлажденный настой чая (1 л дистиллированной воды доводили до кипения, добавляли сухой черный байховый чай, проводили экстракцию в течение 15 мин, охлаждали и отфильтровывали). При этом питательная среда стандартизовалась по содержанию РВ от 20 до 25 г/л и по содержанию экстрактивных веществ чая от 1,6 г/л до 4,8 г/л .

В качестве продуцента для биосинтеза БЦ использовалась симбиотическая культура Мedusomyces gisevii Sa-12. Предварительно проводилась адаптация культуры на исследуемой питательной среде. Инокулят вносился в питательные среды в количестве 10 % от объема питательной среды, культивирование проводилось в статических условиях при 27 °С в течение 24 суток. Условия культивирования выбраны на основании ранее проведённых работ .

Микробиологические показатели (количество дрожжей и уксуснокислых бактерий) контролировались с использованием микроскопа B-150 OPTIKA. Прирост пленки БЦ оценивался гравиметрическим методом (весы лабораторные аналитические Explorer EX-224), уровень активной кислотности контролировался с помощью иономера (иономер И-160 МИ). Концентрация РВ контролировалась спектрофотометрическим методом (спектрофотометр «UNICO-2804», США) с использованием динитросалицилового реактива, концентрация ксилозы определялась по стандартной методике, которая основана на образовании фурфурола из пентозанов.

Структура бактериальной целлюлозы была исследована на инфракрасном спектрофотометре «Инфралюм ФТ-801» в таблетках KBr.

Результаты исследования и их обсуждение

Изменение количества дрожжей и уксуснокислых клеток в процессе культивирования Мedusomyces gisevii Sa-12 на ферментативном гидролизате ЛЦМ мискантуса представлено на рис. 1, изменение уровня активной кислотности в процессе культивирования Мedusomyces gisevii Sa-12 - на рис. 2.

Концентрация клеток дрожжей в питательной среде в процессе культивирования оказалась на порядок выше, чем уксуснокислых бактерий. Для дрожжей лаг-фаза не наблюдалась, увеличение концентрации клеток происходило с 0 по 12 сутки, после 12 суток происходила фаза отмирания. Для уксуснокислых бактерий наблюдалась лаг-фаза, до 8 суток их количество увеличивалось, с 8 по 10 сутки количество клеток оставалось постоянным, после 10 суток происходила фаза отмирания.

Рис. 3. Зависимость концентрации РВ и выхода БЦ от продолжительности культивирования

В процессе культивирования симбиотической культуры Мedusomyces gisevii в питательной среде в результате действия защитного механизма накапливаются промежуточные продукты гликолиза: уксусная, глюконовая кислоты, этанол и глицерин , косвенно об их накоплении можно судить по изменениям рН. Начальная активная кислотность питательной среды составляла 4,0, до шестых суток культивирования значение pH понизилось до 3,8. Далее в процессе культивирования значение активной кислотности среды повышалось до 5,9. Повышение активной кислотности не характерно для данного продуцента, однако похожая зависимость описана при культивировании продуцента Gluconacetobacter xylinus CH001 на кислотном гидролизате мискантуса .

На рис. 3 представлена зависимость концентрации РВ и выхода БЦ от продолжительности культивирования.

Константа скорости утилизации субстрата рассчитана по формуле :

где Ку.с. - константа утилизации субстрата, сут-1; S1, S2 - концентрация РВ в начальный и конечный моменты времени; t1, t2 - начальный и конечный моменты времени, сутки.

Рис. 4. Ик-спектр образца БЦ

Утилизация субстрата происходила в два периода: с 0 по 6 сутки культивирования константа скорости утилизации субстрата составила 0,234 сут-1, со 6 по 24 значение снизилось в 12 раз и составило 0,020 сут-1. Быстрая утилизация РВ с 0 по 6 сутки связано с потреблением субстрата микроорганизмами и их активным размножением. Со 6 по 24 сутки РВ медленно расходуются на поддержание жизнедеятельности микроорганизмов.

Гидролизат ЛЦМ мискантуса преимущественно состоит из глюкозы, концентрация ксилозы в нулевой момент времени составила 1,2 г/л. На 7 сутки культивирования общая концентрация РВ составила 4,9 г/л, при этом количество ксилозы в гидролизате практически не изменилось и составило 0,8 г/л. Через 24 суток культивирования концентрация РВ в питательной среде составила 3,4 г/л, а ксилозы - 0,3 г/л.

Скорость синтеза продукта (бактериальной целлюлозы) рассчитана по формуле

где Кс.п. - константа синтеза продукта, сут-1; С1, С2 - масса продукта в начальный и конечный момент времени; t1, t2 - начальный и конечный моменты времени, сутки.

В первые сутки культивирования на поверхности питательной среды не наблюдалось четко выраженной гель-пленки БЦ. На вторые сутки культивирования образовалась тонкая гель-пленка БЦ. Основной прирост биомассы происходил с 2 по 6 сутки культивирования - выход БЦ увеличился с 1,1 % до 4,7 %; константа скорости синтеза продукта в этот период составила 0,363 сут-1. С 6 по 10 сутки выход БЦ вырос до 5,6 %, константа скорости синтеза продукта в этот период снизилась до 0,044 сут-1. Далее скорость синтеза БЦ снижается, стремясь к нулевому значению.

С 10 по 24 сутки выход БЦ снизился до 1 %, что указывает на идущие процессы деструкции, этот период совпадает с фазой отмирания дрожжей и уксуснокислых бактерий. Таким образом, на практике начало фазы отмирания микроорганизмов может служить критерием окончания процесса биосинтеза БЦ.

Ферментативный гидролизат ЛЦМ мискантуса не является благоприятной питательной средой для биосинтеза БЦ, наибольший выход БЦ составил 5,6 %, что в 1,6 раз меньше, чем выход БЦ на синтетической питательной среде при культивировании Мedusomyces gisevii Sa-12 в аналогичных условиях - 9,0 % . Предположительно, это можно объяснить способом предобработки исходного сырья и присутствием примесей в ферментативном гидролизате ЛЦМ мискантуса, которые могут ингибировать биосинтез БЦ. Таким образом, доброкачественность ферментативного гидролизата ЛЦМ мискантуса для биосинтеза этанола не является гарантией доброкачественности для биосинтеза БЦ, что обусловлено большой требовательностью к качеству питательных сред симбиотических продуцентов Мedusomyces gisevii Sa-12 по сравнению с Saccharomyces сerevisiae. Можно предположить, что для успешного биосинтеза БЦ следует использовать более чистые субстраты, например техническую целлюлозу мискантуса.

На рис. 4 представлен ИК-спектр образца БЦ, синтезированного на ферментативном гидролизате ЛЦМ мискантуса.

В инфракрасном спектре образца БЦ присутствует интенсивная полоса при 3381 см-1, которая указывает на валентные колебания OH-групп. Менее интенсивная полоса при 2917 см-1 обусловлена валентными колебаниями групп CH2, CH. В спектре БЦ полосы в диапазоне 2000-1500 см-1 принадлежат деформационным колебаниям OH-групп прочно связанной воды. Слабые полосы поглощения в диапазоне: 1430-1370 см-1 обусловлены деформационным колебаниям групп CH2; 1360-1320 см-1 - деформационные колебания групп OH в CH2OH. Полосы при 1281 и 1235 см-1 указывают на деформационные колебания OH-групп в спиртах. Полоса при 1204 см-1 указывает на деформационные колебания OH-групп. Полосы поглощения в области 1000-1200 см-1 обусловлены в основном валентными колебаниями C-O-C и C-O в спиртах . Таким образом, методом ИК подтверждено, что БЦ, полученная на ферментативном гидролизате ЛЦМ, является чистым соединением, содержащим только целлюлозу.

Исследован процесс биосинтеза БЦ симбиотической культурой Мedusomyces gisevii Sa-12 на ферментативном гидролизате ЛЦМ мискантуса. Основная утилизация субстрата происходит за 6 суток культивирования, константа утилизации субстрата составляет 0,236 сут-1. Установлено, что численность уксуснокислых бактерий в процессе культивирования на порядок меньше, чем дрожжей, и через 10 суток составляет 1,1 КОЕ/мл. Показано, что на практике начало фазы отмирания симбиотических микроорганизмов может служить критерием окончания процесса биосинтеза, так как эта фаза совпадает с процессом деструкции БЦ. Показано, что ферментативный гидролизат ЛЦМ мискантуса не является доброкачественной питательной средой для биосинтеза БЦ: выход БЦ на 10 сутки культивирования составляет 5,6 %, что в 1,6 раз меньше, чем выход БЦ на синтетической питательной среде, а на 24 сутки выход падает до 1,0 %, то есть БЦ подвергается деструкции. С помощью инфракрасной спектроскопии установлено, что БЦ является чистым соединением, содержащим только целлюлозу.

Исследование выполнено за счет гранта Российского научного фонда (проект № 17-19-01054).

Библиографическая ссылка

Гладышева Е.К. БИОСИНТЕЗ БАКТЕРИАЛЬНОЙ ЦЕЛЛЮЛОЗЫ НА ФЕРМЕНТАТИВНОМ ГИДРОЛИЗАТЕ ЛИГНОЦЕЛЛЮЛОЗНОГО МАТЕРИАЛА МИСКАНТУСА // Фундаментальные исследования. – 2017. – № 9-2. – С. 290-294;
URL: http://fundamental-research.ru/ru/article/view?id=41742 (дата обращения: 13.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»